Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 81(8): 3922-32, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17251282

RESUMO

Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCoV-229E) amino-proximal pp1a/pp1ab region by two paralogous PLpro activities. Reverse-genetics data revealed that replacement of the PL2pro active-site cysteine was lethal. By contrast, the PL1pro activity proved to be dispensable for HCoV-229E virus replication, although reversion of the PL1pro active-site substitution to the wild-type sequence after several passages in cell culture indicated that there was selection pressure to restore the PL1pro activity. Further experiments showed that both PL1pro and PL2pro were able to cleave the nsp1-nsp2 cleavage site, with PL2pro cleaving the site less efficiently. The PL1pro-negative mutant genotype could be stably maintained in cell culture when the nsp1-nsp2 site was replaced by a short autoproteolytic sequence, suggesting that the major driving force for the observed reversion of the PL1pro mutation was the requirement for efficient nsp1-nsp2 cleavage. The data suggest that the two HCoV-229E PLpro paralogs have overlapping substrate specificities but different functions in viral replication. Within the tightly controlled interplay of the two protease activities, PL2pro plays a universal and essential proteolytic role that appears to be assisted by the PL1pro paralog at specific sites. Functional and evolutionary implications of the differential amino-terminal polyprotein-processing pathways among the main CoV lineages are discussed.


Assuntos
Coronavirus Humano 229E/fisiologia , Cisteína Endopeptidases/fisiologia , Poliproteínas/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Coronavirus Humano 229E/genética , Cisteína Endopeptidases/genética , Humanos , Viabilidade Microbiana , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
2.
J Virol ; 80(23): 11598-609, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16987966

RESUMO

The order Nidovirales comprises viruses from the families Coronaviridae (genera Coronavirus and Torovirus), Roniviridae (genus Okavirus), and Arteriviridae (genus Arterivirus). In this study, we characterized White bream virus (WBV), a bacilliform plus-strand RNA virus isolated from fish. Analysis of the nucleotide sequence, organization, and expression of the 26.6-kb genome provided conclusive evidence for a phylogenetic relationship between WBV and nidoviruses. The polycistronic genome of WBV contains five open reading frames (ORFs), called ORF1a, -1b, -2, -3, and -4. In WBV-infected cells, three subgenomic RNAs expressing the structural proteins S, M, and N were identified. The subgenomic RNAs were revealed to share a 42-nucleotide, 5' leader sequence that is identical to the 5'-terminal genome sequence. The data suggest that a conserved nonanucleotide sequence, CA(G/A)CACUAC, located downstream of the leader and upstream of the structural protein genes acts as the core transcription-regulating sequence element in WBV. Like other nidoviruses with large genomes (>26 kb), WBV encodes in its ORF1b an extensive set of enzymes, including putative polymerase, helicase, ribose methyltransferase, exoribonuclease, and endoribonuclease activities. ORF1a encodes several membrane domains, a putative ADP-ribose 1"-phosphatase, and a chymotrypsin-like serine protease whose activity was established in this study. Comparative sequence analysis revealed that WBV represents a separate cluster of nidoviruses that significantly diverged from toroviruses and, even more, from coronaviruses, roniviruses, and arteriviruses. The study adds to the amazing diversity of nidoviruses and appeals for a more extensive characterization of nonmammalian nidoviruses to better understand the evolution of these largest known RNA viruses.


Assuntos
Genoma Viral , Família Multigênica/fisiologia , Nidovirales/genética , RNA Polimerase Dependente de RNA/química , Coronaviridae/classificação , Coronaviridae/genética , Dados de Sequência Molecular , Nidovirales/classificação , Nidovirales/ultraestrutura , Fases de Leitura Aberta , Vírus de RNA/genética , RNA Viral/análise , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de RNA
3.
Proc Natl Acad Sci U S A ; 101(34): 12694-9, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15304651

RESUMO

Coronaviruses are important pathogens that cause acute respiratory diseases in humans. Replication of the approximately 30-kb positive-strand RNA genome of coronaviruses and discontinuous synthesis of an extensive set of subgenome-length RNAs (transcription) are mediated by the replicase-transcriptase, a barely characterized protein complex that comprises several cellular proteins and up to 16 viral subunits. The coronavirus replicase-transcriptase was recently predicted to contain RNA-processing enzymes that are extremely rare or absent in other RNA viruses. Here, we established and characterized the activity of one of these enzymes, replicative nidoviral uridylate-specific endoribonuclease (NendoU). It is considered a major genetic marker that discriminates nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) from all other RNA virus families. Bacterially expressed forms of NendoU of severe acute respiratory syndrome coronavirus and human coronavirus 229E were revealed to cleave single-stranded and double-stranded RNA in a Mn(2+)-dependent manner. Single-stranded RNA was cleaved less specifically and effectively, suggesting that double-stranded RNA is the biologically relevant NendoU substrate. Double-stranded RNA substrates were cleaved upstream and downstream of uridylates at GUU or GU sequences to produce molecules with 2'-3' cyclic phosphate ends. 2'-O-ribose-methylated RNA substrates proved to be resistant to cleavage by NendoU, indicating a functional link with the 2'-O-ribose methyltransferase located adjacent to NendoU in the coronavirus replicative polyprotein. A mutagenesis study verified potential active-site residues and allowed us to inactivate NendoU in the full-length human coronavirus 229E clone. Substitution of D6408 by Ala was shown to abolish viral RNA synthesis, demonstrating that NendoU has critical functions in viral replication and transcription.


Assuntos
Endorribonucleases/genética , Nidovirales/enzimologia , Proteínas Virais/genética , Replicação Viral , Sequência de Aminoácidos , Endorribonucleases/metabolismo , Marcadores Genéticos , Humanos , Manganês/metabolismo , Metilação , Dados de Sequência Molecular , Nidovirales/genética , Fosfatos/química , Fosfatos/metabolismo , RNA Viral/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Alinhamento de Sequência , Especificidade por Substrato , Uridina Monofosfato/metabolismo , Proteínas Virais/metabolismo
4.
J Gen Virol ; 84(Pt 9): 2305-2315, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12917450

RESUMO

A novel coronavirus is the causative agent of the current epidemic of severe acute respiratory syndrome (SARS). Coronaviruses are exceptionally large RNA viruses and employ complex regulatory mechanisms to express their genomes. Here, we determined the sequence of SARS coronavirus (SARS-CoV), isolate Frankfurt 1, and characterized key RNA elements and protein functions involved in viral genome expression. Important regulatory mechanisms, such as the (discontinuous) synthesis of eight subgenomic mRNAs, ribosomal frameshifting and post-translational proteolytic processing, were addressed. Activities of three SARS coronavirus enzymes, the helicase and two cysteine proteinases, which are known to be critically involved in replication, transcription and/or post-translational polyprotein processing, were characterized. The availability of recombinant forms of key replicative enzymes of SARS coronavirus should pave the way for high-throughput screening approaches to identify candidate inhibitors in compound libraries.


Assuntos
Regulação Viral da Expressão Gênica , Genoma Viral , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Domínio Catalítico , Proteases 3C de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Papaína/genética , Papaína/metabolismo , Biossíntese de Proteínas , RNA Helicases/biossíntese , RNA Helicases/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Alinhamento de Sequência , Proteínas Virais/metabolismo
5.
J Virol ; 77(2): 1415-26, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502857

RESUMO

Gill-associated virus (GAV), a positive-stranded RNA virus of prawns, is the prototype of newly recognized taxa (genus Okavirus, family Roniviridae) within the order NIDOVIRALES: In this study, a putative GAV cysteine proteinase (3C-like proteinase [3CL(pro)]), which is predicted to be the key enzyme involved in processing of the GAV replicase polyprotein precursors, pp1a and pp1ab, was characterized. Comparative sequence analysis indicated that, like its coronavirus homologs, 3CL(pro) has a three-domain organization and is flanked by hydrophobic domains. The putative 3CL(pro) domain including flanking regions (pp1a residues 2793 to 3143) was fused to the Escherichia coli maltose-binding protein (MBP) and, when expressed in E. coli, was found to possess N-terminal autoprocessing activity that was not dependent on the presence of the 3CL(pro) C-terminal domain. N-terminal sequence analysis of the processed protein revealed that cleavage occurred at the location (2827)LVTHE downward arrow VRTGN(2836). The trans-processing activity of the purified recombinant 3CL(pro) (pp1a residues 2832 to 3126) was used to identify another cleavage site, (6441)KVNHE downward arrow LYHVA(6450), in the C-terminal pp1ab region. Taken together, the data tentatively identify VxHE downward arrow (L,V) as the substrate consensus sequence for the GAV 3CL(pro). The study revealed that the GAV and potyvirus 3CL(pro)s possess similar substrate specificities which correlate with structural similarities in their respective substrate-binding sites, identified in sequence comparisons. Analysis of the proteolytic activities of MBP-3CL(pro) fusion proteins carrying replacements of putative active-site residues provided evidence that, in contrast to most other 3C/3CL(pro)s but in common with coronavirus 3CL(pro)s, the GAV 3CL(pro) employs a Cys(2968)-His(2879) catalytic dyad. The properties of the GAV 3CL(pro) define a novel RNA virus proteinase variant that bridges the gap between the distantly related chymotrypsin-like cysteine proteinases of coronaviruses and potyviruses.


Assuntos
Coronavirus/enzimologia , Cisteína Endopeptidases/metabolismo , Nidovirales/enzimologia , Potyvirus/enzimologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Cisteína Endopeptidases/química , Primers do DNA , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...