Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030229

RESUMO

Over the years Ski and Sno have been found to be involved in cancer progression e.g. in oesophageal squamous cell carcinoma, melanoma, oestrogen receptor-positive breast carcinoma, colorectal carcinoma, and leukaemia. Often, their prooncogenic features have been linked to their ability of inhibiting the anti-proliferative action of TGF-ß signalling. Recently, not only pro-oncogenic but also anti-oncogenic functions of Ski/Sno proteins have been revealed. Besides Ski and Sno, which are ubiquitously expressed other members of Ski/Sno proteins exist which show highly specific neuronal expression, the SKI Family Transcriptional Corepressors (Skor). Among others Skor1 and Skor2 are involved in the development of Purkinje neurons and a mutation of Skor1 has been found to be associated with restless legs syndrome. But neither Skor1 nor Skor2 have been reported to be involved in cancer progression. Using overexpression studies in the Drosophila eye imaginal disc, we analysed if the Drosophila Skor homologue Fuss has retained the potential to inhibit differentiation and induce increased proliferation. Fuss expressed in cells posterior to the morphogenetic furrow, impairs photoreceptor axon pathfinding and inhibits differentiation of accessory cells. However, if its expression is induced prior to eye differentiation, Fuss might inhibit the differentiating function of Dpp signalling and might maintain proliferative action of Wg signalling, which is reminiscent of the Ski/Sno protein function in cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Discos Imaginais/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Aciltransferases/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
2.
J Neurochem ; 131(3): 369-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25040725

RESUMO

Drosophila melanogaster has contributed significantly to the understanding of disease mechanisms in Parkinson's disease (PD) as it is one of the very few PD model organisms that allow the study of age-dependent behavioral defects, physiology and histology, and genetic interactions among different PD-related genes. However, there have been contradictory results from a number of recent reports regarding the loss of dopaminergic neurons in different PD fly models. In an attempt to re-evaluate and clarify this issue, we have examined three different genetic (α-synuclein, Pink1, parkin) and two toxin-based (rotenone and paraquat) models of the disease for neuronal cell loss. Our results showed no dopaminergic neuronal loss in all models tested. Despite this surprising result, we found additional phenotypes showing the dysfunctional status of the dopaminergic neurons in most of the models analyzed. A common feature found in most models is a quantifiable decrease in the fluorescence of a green-fluorescent protein reporter gene in dopaminergic neurons that correlates well with other phenotypes found for these models and can be reliably used as a hallmark of the neurodegenerative process when modeling diseases affecting the dopaminergic system in Drosophila. Analyzing three genetic and two toxin-based Drosophila models of Parkinson's disease (PD) through green fluorescent protein reporter and α-tyrosine hydroxylase staining, we have found the number of dopaminergic neurons to remain unchanged. Despite the lack of neuronal loss, we have detected a remarkable decrease in a reporter green-fluorescent protein (GFP) signal in dopaminergic neurons, suggesting an abnormal neuronal status that correlates with the phenotypes associated with those PD fly models.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Drosophila/fisiologia , Doença de Parkinson Secundária/patologia , Doença de Parkinson/patologia , Animais , Contagem de Células , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Mutação/genética , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Doença de Parkinson Secundária/induzido quimicamente , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
3.
PLoS One ; 7(8): e42349, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879948

RESUMO

The TGF-ß/BMP signaling cascades control a wide range of developmental and physiological functions in vertebrates and invertebrates. In Drosophila melanogaster, members of this pathway can be divided into a Bone Morphogenic Protein (BMP) and an Activin-ß (Act-ß) branch, where Decapentaplegic (Dpp), a member of the BMP family has been most intensively studied. They differ in ligands, receptors and transmitting proteins, but also share some components, such as the Co-Smad Medea (Med). The essential role of Med is to form a complex with one of the two activating Smads, mothers against decapentaplegic (Mad) or dSmad, and to translocate together to the nucleus where they can function as transcriptional regulators of downstream target genes. This signaling cascade underlies different mechanisms of negative regulation, which can be exerted by inhibitory Smads, such as daughters against decapentaplegic (dad), but also by the Ski-Sno family. In this work we identified and functionally analyzed a new member of the Ski/Sno-family, fussel (fuss), the Drosophila homolog of the human functional suppressing element 15 (fussel-15). fuss codes for two differentially spliced transcripts with a neuronal expression pattern. The proteins are characterized by a Ski-Sno and a SAND homology domain. Overexpression studies and genetic interaction experiments clearly reveal an interaction of fuss with members of the BMP pathway, leading to a strong repression of BMP-signaling. The protein interacts directly with Medea and seems to reprogram the Smad pathway through its influence upon the formation of functional Mad/Medea complexes. This leads amongst others to a repression of downstream target genes of the Dpp pathway, such as optomotor blind (omb). Taken together we could show that fuss exerts a pivotal role as an antagonist of BMP signaling in Drosophila melanogaster.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Loci Gênicos/genética , Genoma de Inseto/genética , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Filogenia , Transporte Proteico , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteína Smad4/metabolismo , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo
4.
Neurobiol Dis ; 40(1): 113-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20211259

RESUMO

Parkinson's disease has been found to be caused by both, genetic and environmental factors. Despite the diversity of causes involved, a convergent pathogenic mechanism might underlie the special vulnerability of dopaminergic neurons in different forms of Parkinsonism. In recent years, a number of reports have proposed dopamine as a common player responsible in the loss of dopaminergic neurons independent of its etiology. Using RNAi lines we were able to generate flies with drastically reduced dopamine levels in the dopaminergic neurons. Combining these flies with a chemically induced Parkinson model (rotenone) and a familial form of Parkinson (mutant alpha-synuclein) we were able to show a strong reduction of neurotoxicity and a protection of the dopaminergic neurons when cellular dopamine levels were reduced. These results show that dopamine homeostasis plays a central role for the susceptibility of dopaminergic neurons to environmental and genetic factors in in vivo models of Parkinson disease.


Assuntos
Dopamina/fisiologia , Drosophila melanogaster/genética , Modelos Genéticos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Humanos , Degeneração Neural/induzido quimicamente , Doença de Parkinson/etiologia , Rotenona/toxicidade
5.
Neuromolecular Med ; 11(4): 268-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19855946

RESUMO

The recent discovery of a number of genes involved in familial forms of Parkinson's disease (PD) has moved the use of model genetic organisms to the frontline. One avenue holding tremendous potential to find therapies against human diseases is the use of intact living systems where complex biological processes can be examined. Despite key differences that need to be taken into account when using invertebrate models such as Drosophila, there are many advantages offered by this system. The rapid generation time and the ability to easily generate transgenic animals together with the variety of genetic tools to control temporal and spatial expression of any given gene makes the fly model a very attractive system to study human neurodegenerative disorders. In this review, we analyze how the use of fruit flies has revealed to be an excellent tool providing valuable insights into the current understanding of the molecular mechanisms involved in the progression of PD.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster , Doença de Parkinson/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Superóxidos/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/química
6.
Free Radic Biol Med ; 46(12): 1668-76, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19345730

RESUMO

Oxidative stress has been reported to be a common underlying mechanism in the pathogenesis of many neurodegenerative disorders such as Alzheimer, Huntington, Creutzfeld-Jakob, and Parkinson disease. Despite the increasing number of articles showing a correlation between oxidative damage and neurodegeneration little is known about the genetic elements that confer protection against the deleterious effects of an oxidative imbalance in neurons. We show that oxygen-induced damage is a direct cause of brain degeneration in Drosophila and establish an experimental setup measuring dopaminergic neuron survival to model oxidative stress-induced neurodegeneration in flies. The overexpression of superoxide dismutase but not catalase was able to protect dopaminergic neurons against oxidative imbalance under hyperoxia treatment. In an effort to identify new genes involved in the process of oxidative stress-induced neurodegeneration, we have carried out a genome-wide expression analysis to identify genes whose expression is upregulated in fly heads under hyperoxia. Among them, a number of mitochondrial and cytoplasmic chaperones could be identified and were shown to protect dopaminergic neurons when overexpressed, thus validating our approach to identifying new genes involved in the neuronal defense mechanism against oxidative stress.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insetos/genética , Chaperonas Moleculares/genética , Degeneração Neural/metabolismo , Oxigênio/metabolismo , Superóxido Dismutase/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila melanogaster/enzimologia , Masculino , Chaperonas Moleculares/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Oxigênio/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo
7.
Neurobiol Dis ; 30(1): 65-73, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18243716

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Some of the inherited forms of the disease are caused by mutations in the alpha-synuclein gene and the triplication of its locus. Oxidative stress has been proposed as a central mechanism for the progression of the disease although its relation with alpha-synuclein toxicity remains obscure. Targeted expression of human alpha-synuclein has been effectively used to recreate the pathology of PD in Drosophila melanogaster and it has been proved an excellent tool for the study of testable hypothesis in relation to the disease. We show that dopaminergic neurons are specifically sensitive to hyperoxia induced oxidative stress and that mutant forms of alpha-synuclein show an enhanced toxicity under these conditions suggesting synergic interactions. In addition, the co-expression of Cu/Zn superoxid dismutase protects against the dopaminergic neuronal loss induced by mutant alpha-synuclein overexpression thus identifying oxidative stress as an important causative factor in the pathology of autosomal-dominant Parkinsonism.


Assuntos
Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios/metabolismo , Doença de Parkinson/patologia , Substância Negra/patologia , Superóxido Dismutase/metabolismo , Fatores Etários , Animais , Animais Geneticamente Modificados , Sobrevivência Celular/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipóxia/fisiopatologia , Mutação/fisiologia , Estresse Oxidativo/genética , Doença de Parkinson/genética , Superóxido Dismutase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...