Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(28): 8682-5, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27359196

RESUMO

Mg(PF6)2-based electrolytes for Mg-ion batteries have not received the same attention as the analogous LiPF6-based electrolytes used in most Li-ion cells owing to the perception that the PF6(-) anion decomposes on and passivates Mg electrodes. No synthesis of the Mg(PF6)2 salt has been reported, nor have its solutions been studied electrochemically. Here, we report the synthesis of the complex Mg(PF6)2(CH3CN)6 and its solution-state electrochemistry. Solutions of Mg(PF6)2(CH3CN)6 in CH3CN and CH3CN/THF mixtures exhibit high conductivities (up to 28 mS·cm(-1)) and electrochemical stability up to at least 4 V vs Mg on Al electrodes. Contrary to established perceptions, Mg electrodes are observed to remain electrochemically active when cycled in the presence of these Mg(PF6)2-based electrolytes, with no fluoride (i.e., MgF2) formed on the Mg surface. Stainless steel electrodes are found to corrode when cycled in the presence of Mg(PF6)2 solutions, but Al electrodes are passivated. The electrolytes have been used in a prototype Mg battery with a Mg anode and Chevrel (Mo3S4)-phase cathode.

2.
Science ; 352(6286): 667, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27158717

RESUMO

Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) ↔ 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.

3.
J Magn Reson ; 265: 200-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26938943

RESUMO

We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep (7)Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, (31)P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. (31)P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of (31)P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC (23)Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and electrolyte peak, respectively. Thus, interleaved measurements with different optimal NMR set-ups for the metal and electrolyte, respectively, became possible. This allowed the formation of different Na metal species as well as a quantification of electrolyte consumption during the electrochemical experiment to be monitored. The new approach is likely to benefit a further understanding of Na-ion battery chemistries.

4.
J Am Chem Soc ; 138(6): 1955-61, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26780974

RESUMO

Sodium batteries have seen a resurgence of interest from researchers in recent years, owing to numerous favorable properties including cost and abundance. Here we examine the feasibility of studying this battery chemistry with in situ NMR, focusing on Na metal anodes. Quantification of the NMR signal indicates that Na metal deposits with a morphology associated with an extremely high surface area, the deposits continually accumulating, even in the case of galvanostatic cycling. Two regimes for the electrochemical cycling of Na metal are apparent that have implications for the use of Na anodes: at low currents, the Na deposits are partially removed on reversing the current, while at high currents, there is essentially no removal of the deposits in the initial stages. At longer times, high currents show a significantly greater accumulation of deposits during cycling, again indicating a much lower efficiency of removal of these structures when the current is reversed.

5.
Science ; 350(6260): 530-3, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26516278

RESUMO

The rechargeable aprotic lithium-air (Li-O2) battery is a promising potential technology for next-generation energy storage, but its practical realization still faces many challenges. In contrast to the standard Li-O2 cells, which cycle via the formation of Li2O2, we used a reduced graphene oxide electrode, the additive LiI, and the solvent dimethoxyethane to reversibly form and remove crystalline LiOH with particle sizes larger than 15 micrometers during discharge and charge. This leads to high specific capacities, excellent energy efficiency (93.2%) with a voltage gap of only 0.2 volt, and impressive rechargeability. The cells tolerate high concentrations of water, water being the dominant proton source for the LiOH; together with LiI, it has a decisive impact on the chemical nature of the discharge product and on battery performance.

6.
J Am Chem Soc ; 137(22): 7231-42, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25973552

RESUMO

Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors.

7.
Chem Commun (Camb) ; 51(2): 266-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24898258

RESUMO

The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation.


Assuntos
Galvanoplastia , Imageamento Tridimensional , Lítio/química , Galvanoplastia/métodos , Imageamento Tridimensional/métodos , Síncrotrons , Raios X
8.
J Phys Chem Lett ; 4(17): 3019-3023, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24265861

RESUMO

The drive to develop better electrochemical energy storage devices requires the development of not only new materials, but also better understanding of the underpinning chemical and dynamical processes within such devices during operation, for which new analytical techniques are required. Currently, there are few techniques that can probe local composition and transport in the electrolyte during battery operation. In this paper, we report a novel application of magnetic resonance imaging (MRI) for probing electrochemical processes in a model electrochemical cell. Using MRI, the transport and zinc and oxygen electrochemistry in an alkaline electrolyte, typical of that found in zinc-air batteries, are investigated. Magnetic resonance relaxation maps of the electrolyte are used to visualize the chemical composition and electrochemical processes occurring during discharge in this model metal-air battery. Such experiments will be useful in the development of new energy storage/conversion devices, as well as other electrochemical technologies.

9.
Phys Chem Chem Phys ; 13(10): 4632-40, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21279209

RESUMO

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf(2) electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T(1)) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. (1)H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both (19)F and (7)Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

10.
Chemphyschem ; 12(4): 823-7, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21264997

RESUMO

A binary ionic liquid (IL) system based on a common cation, N-methyl-N-propylpyrrolidinium (C(3) mpyr(+)), and either bis(trifluoromethanesulfonyl)imide (NTf(2) (-)) or bis(fluorosulfonyl) imide (FSI(-) as the anion is explored over its entire composition range. Phase behavior, determined by DSC, shows the presence of a eutectic temperature at 247 K and composition around an anion ratio of 2:1 (FSI(-) :NTf(2)(-)) with the phase diagram for this system proposed (under the thermal conditions used). Importantly for electrochemical devices, the single phase melting transition at the eutectic is well below ambient temperatures (247 K). To investigate the effect of such anion mixing on the lithium ion speciation, conductivity and PFG-NMR diffusion measurements were performed in both the binary IL system as well as the Li-NTf(2) -containing ternary system. The addition of the lithium salt to the mixed IL system resulted in a decrease in conductivity, as is commonly observed in the single-component IL systems. For a fixed lithium salt composition, both conductivity and ion diffusion have linear behaviour as a function of the anion ratio, however, the rate of change of the diffusion coefficient seems greater in the presence of lithium. From the application point of view, the addition of the FSI(-) to the NTf(2)(-) IL results in a considerable increase in lithium ion diffusivity at room temperature and no evidence of additional complex ion behaviour.

11.
Phys Chem Chem Phys ; 12(37): 11291-8, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20680198

RESUMO

Mixtures of the plastic crystal material choline dihydrogen phosphate [Choline][DHP] and phosphoric acid, from 4.5 mol% to 18 mol% H(3)PO(4), were investigated and shown to have significantly higher proton conductivity compared to the pure [Choline][DHP]. This was particularly evident from the electrochemical hydrogen reduction reaction and the proton NMR diffusion measurements, in addition to ionic conductivity measured from the impedance spectroscopy. The ionic conductivity was observed to increase by more than an order of magnitude in phase I (i.e. the highest temperature solid phase in [Choline][DHP]) reaching up to 10(-2) S cm(-1). The multinuclear NMR spectroscopy data suggest that, at least on the timescale of the NMR measurement, the H(+) cations and [DHP] anions are equivalent in both phases. The pulsed field gradient NMR diffusion measurements of the 18 mol% acid sample indicate that all three ions are mobile, however the H(+) diffusion coefficient is an order of magnitude higher than for the [Choline] cation or the [DHP] anion, and therefore conduction in these materials is dominated by proton conductivity. The thermal stability, as measured by TGA, is unaffected with increasing acid additions and remains high; i.e. no significant mass loss below 200 °C.

12.
Phys Chem Chem Phys ; 11(33): 7202-8, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672530

RESUMO

Ionic liquids (ILs) form a novel class of electrolytes with unique properties that make them attractive candidates for electrochemical devices. In the present study a range of electrolytes were prepared based on the IL N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl) amide ([C(3)mpyr][NTf(2)]) and LiNTf(2) salt. The traditional organic solvent diluents vinylene carbonate (VC), ethylene carbonate (EC), tetrahydrofuran (THF) and toluene were used as additives at two concentrations, 10 and 20 mol%, leading to a ratio of about 0.6 and 1.3 diluent molecules to lithium ions, respectively. Most promisingly, the lithium ions see the greatest effect in the presence of all the diluents, except toluene, producing a lithium self-diffusion coefficient of almost a factor of 2.5 times greater for THF at 20 mol%. Raman spectroscopy subtly indicates that THF may be effectively breaking up a small portion of the lithium ion-anion interaction. While comparing the measured molar conductivity to that calculated from the self-diffusion coefficients of the constituents indicates that the diluents cause an increase in the overall ion clustering. This study importantly highlights that selective ion transport enhancement is achievable in these materials.

13.
Chem Commun (Camb) ; (23): 2689-91, 2008 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-18535709

RESUMO

Commonly used for purification, alumina and silica are found to contaminate ionic liquids with particles; these particles cannot be removed easily and can have a non-negligible impact on the electrochemical, spectroscopic and physical properties of an ionic liquid, including its nucleation and crystallisation kinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...