Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(3): 1293-1305, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38240687

RESUMO

We present an efficient polarizable electrostatic model, utilizing typed, atom-centered polarizabilities and the fast direct approximation, designed for efficient use in molecular dynamics (MD) simulations. The model provides two convenient approaches for assigning partial charges in the context of atomic polarizabilities. One is a generalization of RESP, called RESP-dPol, and the other, AM1-BCC-dPol, is an adaptation of the widely used AM1-BCC method. Both are designed to accurately replicate gas-phase quantum mechanical electrostatic potentials. Benchmarks of this polarizable electrostatic model against gas-phase dipole moments, molecular polarizabilities, bulk liquid densities, and static dielectric constants of organic liquids show good agreement with the reference values. Of note, the model yields markedly more accurate dielectric constants of organic liquids, relative to a matched nonpolarizable force field. MD simulations with this method, which is currently parametrized for molecules containing elements C, N, O, and H, run only about 3.6-fold slower than fixed charge force fields, while simulations with the self-consistent mutual polarization average 4.5-fold slower. Our results suggest that RESP-dPol and AM1-BCC-dPol afford improved accuracy relative to fixed charge force fields and are good starting points for developing general, affordable, and transferable polarizable force fields. The software implementing these approaches has been designed to utilize the force field fitting frameworks developed and maintained by the Open Force Field Initiative, setting the stage for further exploration of this approach to polarizable force field development.

2.
J Chem Theory Comput ; 19(11): 3251-3275, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37167319

RESUMO

We introduce the Open Force Field (OpenFF) 2.0.0 small molecule force field for drug-like molecules, code-named Sage, which builds upon our previous iteration, Parsley. OpenFF force fields are based on direct chemical perception, which generalizes easily to highly diverse sets of chemistries based on substructure queries. Like the previous OpenFF iterations, the Sage generation of OpenFF force fields was validated in protein-ligand simulations to be compatible with AMBER biopolymer force fields. In this work, we detail the methodology used to develop this force field, as well as the innovations and improvements introduced since the release of Parsley 1.0.0. One particularly significant feature of Sage is a set of improved Lennard-Jones (LJ) parameters retrained against condensed phase mixture data, the first refit of LJ parameters in the OpenFF small molecule force field line. Sage also includes valence parameters refit to a larger database of quantum chemical calculations than previous versions, as well as improvements in how this fitting is performed. Force field benchmarks show improvements in general metrics of performance against quantum chemistry reference data such as root-mean-square deviations (RMSD) of optimized conformer geometries, torsion fingerprint deviations (TFD), and improved relative conformer energetics (ΔΔE). We present a variety of benchmarks for these metrics against our previous force fields as well as in some cases other small molecule force fields. Sage also demonstrates improved performance in estimating physical properties, including comparison against experimental data from various thermodynamic databases for small molecule properties such as ΔHmix, ρ(x), ΔGsolv, and ΔGtrans. Additionally, we benchmarked against protein-ligand binding free energies (ΔGbind), where Sage yields results statistically similar to previous force fields. All the data is made publicly available along with complete details on how to reproduce the training results at https://github.com/openforcefield/openff-sage.


Assuntos
Benchmarking , Proteínas , Ligantes , Proteínas/química , Termodinâmica , Entropia
3.
Artigo em Inglês | MEDLINE | ID: mdl-36382113

RESUMO

Free energy calculations are rapidly becoming indispensable in structure-enabled drug discovery programs. As new methods, force fields, and implementations are developed, assessing their expected accuracy on real-world systems (benchmarking) becomes critical to provide users with an assessment of the accuracy expected when these methods are applied within their domain of applicability, and developers with a way to assess the expected impact of new methodologies. These assessments require construction of a benchmark-a set of well-prepared, high quality systems with corresponding experimental measurements designed to ensure the resulting calculations provide a realistic assessment of expected performance when these methods are deployed within their domains of applicability. To date, the community has not yet adopted a common standardized benchmark, and existing benchmark reports suffer from a myriad of issues, including poor data quality, limited statistical power, and statistically deficient analyses, all of which can conspire to produce benchmarks that are poorly predictive of real-world performance. Here, we address these issues by presenting guidelines for (1) curating experimental data to develop meaningful benchmark sets, (2) preparing benchmark inputs according to best practices to facilitate widespread adoption, and (3) analysis of the resulting predictions to enable statistically meaningful comparisons among methods and force fields. We highlight challenges and open questions that remain to be solved in these areas, as well as recommendations for the collection of new datasets that might optimally serve to measure progress as methods become systematically more reliable. Finally, we provide a curated, versioned, open, standardized benchmark set adherent to these standards (PLBenchmarks) and an open source toolkit for implementing standardized best practices assessments (arsenic) for the community to use as a standardized assessment tool. While our main focus is free energy methods based on molecular simulations, these guidelines should prove useful for assessment of the rapidly growing field of machine learning methods for affinity prediction as well.

4.
J Chem Theory Comput ; 17(10): 6262-6280, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551262

RESUMO

We present a methodology for defining and optimizing a general force field for classical molecular simulations, and we describe its use to derive the Open Force Field 1.0.0 small-molecule force field, codenamed Parsley. Rather than using traditional atom typing, our approach is built on the SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism, which handles increases in the diversity and specificity of the force field definition without needlessly increasing the complexity of the specification. Parameters are optimized with the ForceBalance tool, based on reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These quantum reference data are computed and are maintained with QCArchive, an open-source and freely available distributed computing and database software ecosystem. In this initial application of the method, we present essentially a full optimization of all valence parameters and report tests of the resulting force field against compounds and data types outside the training set. These tests show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields, as is accuracy on binding free energies. We find that this initial Parsley force field affords accuracy similar to that of other general force fields when used to calculate relative binding free energies spanning 199 protein-ligand systems. Additionally, the resulting infrastructure allows us to rapidly optimize an entirely new force field with minimal human intervention.


Assuntos
Benchmarking , Petroselinum , Ecossistema , Humanos , Ligantes , Conformação Molecular
5.
Commun Chem ; 32020.
Artigo em Inglês | MEDLINE | ID: mdl-34136662

RESUMO

The restrained electrostatic potential (RESP) approach is a highly regarded and widely used method of assigning partial charges to molecules for simulations. RESP uses a quantum-mechanical method that yields fortuitous overpolarization and thereby accounts only approximately for self-polarization of molecules in the condensed phase. Here we present RESP2, a next generation of this approach, where the polarity of the charges is tuned by a parameter, δ, which scales the contributions from gas- and aqueous-phase calculations. When the complete non-bonded force field model, including Lennard-Jones parameters, is optimized to liquid properties, improved accuracy is achieved, even with this reduced set of five Lennard-Jones types. We argue that RESP2 with δ≈0.6 (60% aqueous, 40% gas-phase charges) is an accurate and robust method of generating partial charges, and that a small set of Lennard-Jones types is good starting point for a systematic re-optimization of this important non-bonded term.

6.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-33604023

RESUMO

Background: Force fields are used in a wide variety of contexts for classical molecular simulation, including studies on protein-ligand binding, membrane permeation, and thermophysical property prediction. The quality of these studies relies on the quality of the force fields used to represent the systems. Methods: Focusing on small molecules of fewer than 50 heavy atoms, our aim in this work is to compare nine force fields: GAFF, GAFF2, MMFF94, MMFF94S, OPLS3e, SMIRNOFF99Frosst, and the Open Force Field Parsley, versions 1.0, 1.1, and 1.2. On a dataset comprising 22,675 molecular structures of 3,271 molecules, we analyzed force field-optimized geometries and conformer energies compared to reference quantum mechanical (QM) data. Results: We show that while OPLS3e performs best, the latest Open Force Field Parsley release is approaching a comparable level of accuracy in reproducing QM geometries and energetics for this set of molecules. Meanwhile, the performance of established force fields such as MMFF94S and GAFF2 is generally somewhat worse. We also find that the series of recent Open Force Field versions provide significant increases in accuracy. Conclusions: This study provides an extensive test of the performance of different molecular mechanics force fields on a diverse molecule set, and highlights two (OPLS3e and OpenFF 1.2) that perform better than the others tested on the present comparison. Our molecule set and results are available for other researchers to use in testing.


Assuntos
Simulação de Dinâmica Molecular , Estrutura Molecular , Ligantes , Termodinâmica
7.
J Am Chem Soc ; 141(11): 4711-4720, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30834751

RESUMO

To compare ordered water positions from experiment with those from molecular dynamics (MD) simulations, a number of MD models of water structure in crystalline endoglucanase were calculated. The starting MD model was derived from a joint X-ray and neutron diffraction crystal structure, enabling the use of experimentally assigned protonation states. Simulations were performed in the crystalline state, using a periodic 2 × 2 × 2 supercell with explicit solvent. Water X-ray and neutron scattering density maps were computed from MD trajectories using standard macromolecular crystallography methods. In one set of simulations, harmonic restraints were applied to bias the protein structure toward the crystal structure. For these simulations, the recall of crystallographic waters using strong peaks in the MD water electron density was very good, and there also was substantial visual agreement between the boomerang-like wings of the neutron scattering density and the crystalline water hydrogen positions. An unrestrained simulation also was performed. For this simulation, the recall of crystallographic waters was much lower. For both restrained and unrestrained simulations, the strongest water density peaks were associated with crystallographic waters. The results demonstrate that it is now possible to recover crystallographic water structure using restrained MD simulations but that it is not yet reasonable to expect unrestrained MD simulations to do the same. Further development and generalization of MD water models for force-field development, macromolecular crystallography, and medicinal chemistry applications is now warranted. In particular, the combination of room-temperature crystallography, neutron diffraction, and crystalline MD simulations promises to substantially advance modeling of biomolecular solvation.


Assuntos
Celulase/química , Simulação de Dinâmica Molecular , Solventes/química , Conformação Proteica , Cloreto de Sódio/química , Água/química
8.
J Chem Inf Model ; 59(5): 1957-1964, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30742770

RESUMO

Accurate hydrogen placement in molecular modeling is crucial for studying the interactions and dynamics of biomolecular systems. The carboxyl functional group is a prototypical example of a functional group that requires protonation during structure preparation. To our knowledge, when in their neutral form, carboxylic acids are typically protonated in the syn conformation by default in classical molecular modeling packages, with no consideration of alternative conformations, though we are not aware of any careful examination of this topic. Here, we investigate the general belief that carboxylic acids should always be protonated in the syn conformation. We calculate and compare the relative energetic stabilities of syn and anti acetic acid using ab initio quantum mechanical calculations and atomistic molecular dynamics simulations. We focus on the carboxyl torsional potential and configurations of microhydrated acetic acid from molecular dynamics simulations, probing the effects of solvent, force field (GAFF vs GAFF2), and partial charge assignment of acetic acid. We show that while the syn conformation is the preferred state, the anti state may in some cases also be present under normal NPT conditions in solution.


Assuntos
Acetatos/química , Ácidos Carboxílicos/química , Simulação de Dinâmica Molecular , Teoria Quântica , Conformação Molecular
9.
J Chem Theory Comput ; 15(1): 402-423, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30512951

RESUMO

Molecular mechanics force fields define how the energy and forces in a molecular system are computed from its atomic positions, thus enabling the study of such systems through computational methods like molecular dynamics and Monte Carlo simulations. Despite progress toward automated force field parametrization, considerable human expertise is required to develop or extend force fields. In particular, human input has long been required to define atom types, which encode chemically unique environments that determine which parameters will be assigned. However, relying on humans to establish atom types is suboptimal. Human-created atom types are often developed without statistical justification, leading to over- or under-fitting of data. Human-created types are also difficult to extend in a systematic and consistent manner when new chemistries must be modeled or new data becomes available. Finally, human effort is not scalable when force fields must be generated for new (bio)polymers, compound classes, or materials. To remedy these deficiencies, our long-term goal is to replace human specification of atom types with an automated approach, based on rigorous statistics and driven by experimental and/or quantum chemical reference data. In this work, we describe novel methods that automate the discovery of appropriate chemical perception: SMARTY allows for the creation of atom types, while SMIRKY goes further by automating the creation of fragment (nonbonded, bonds, angles, and torsions) types. These approaches enable the creation of move sets in atom or fragment type space, which are used within a Monte Carlo optimization approach. We demonstrate the power of these new methods by automating the rediscovery of human defined atom types (SMARTY) or fragment types (SMIRKY) in existing small molecule force fields. We assess these approaches using several molecular data sets, including one which covers a diverse subset of the DrugBank database.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Humanos , Método de Monte Carlo
10.
J Chem Theory Comput ; 14(11): 6076-6092, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30351006

RESUMO

Traditional approaches to specifying a molecular mechanics force field encode all the information needed to assign force field parameters to a given molecule into a discrete set of atom types. This is equivalent to a representation consisting of a molecular graph comprising a set of vertices, which represent atoms labeled by atom type, and unlabeled edges, which represent chemical bonds. Bond stretch, angle bend, and dihedral parameters are then assigned by looking up bonded pairs, triplets, and quartets of atom types in parameter tables to assign valence terms and using the atom types themselves to assign nonbonded parameters. This approach, which we call indirect chemical perception because it operates on the intermediate graph of atom-typed nodes, creates a number of technical problems. For example, atom types must be sufficiently complex to encode all necessary information about the molecular environment, making it difficult to extend force fields encoded this way. Atom typing also results in a proliferation of redundant parameters applied to chemically equivalent classes of valence terms, needlessly increasing force field complexity. Here, we describe a new approach to assigning force field parameters via direct chemical perception. Rather than working through the intermediary of the atom-typed graph, direct chemical perception operates directly on the unmodified chemical graph of the molecule to assign parameters. In particular, parameters are assigned to each type of force field term (e.g., bond stretch, angle bend, torsion, and Lennard-Jones) based on standard chemical substructure queries implemented via the industry-standard SMARTS chemical perception language, using SMIRKS extensions that permit labeling of specific atoms within a chemical pattern. We use this to implement a new force field format, called the SMIRKS Native Open Force Field (SMIRNOFF) format. We demonstrate the power and generality of this approach using examples of specific molecules that pose problems for indirect chemical perception and construct and validate a minimalist yet very general force field, SMIRNOFF99Frosst. We find that a parameter definition file only ∼300 lines long provides coverage of all but <0.02% of a 5 million molecule drug-like test set. Despite its simplicity, the accuracy of SMIRNOFF99Frosst for small molecule hydration free energies and selected properties of pure organic liquids is similar to that of the General Amber Force Field, whose specification requires thousands of parameters. This force field provides a starting point for further optimization and refitting work to follow.

12.
J Phys Chem B ; 119(40): 12912-20, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26339862

RESUMO

Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.


Assuntos
Automação , Eletricidade , Armazenamento e Recuperação da Informação
13.
J Comput Aided Mol Des ; 28(3): 289-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24633516

RESUMO

Several submissions for the SAMPL4 hydration free energy set were calculated using OpenEye tools, including many that were among the top performing submissions. All of our best submissions used AM1BCC charges and Poisson-Boltzmann solvation. Three submissions used a single conformer for calculating the hydration free energy and all performed very well with mean unsigned errors ranging from 0.94 to 1.08 kcal/mol. These calculations were very fast, only requiring 0.5-2.0 s per molecule. We observed that our two single-conformer methodologies have different types of failure cases and that these differences could be exploited for determining when the methods are likely to have substantial errors.


Assuntos
Software , Termodinâmica , Água/química , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Solubilidade
14.
J Comput Aided Mol Des ; 28(1): 5-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24488306

RESUMO

Dual Orexin Receptor Antagonists (DORA) bind to both the Orexin 1 and 2 receptors. High resolution crystal structures of the Orexin 1 and 2 receptors, both class A GPCRs, were not available at the time of this study, and thus, ligand-based analyses were invoked and successfully applied to the design of DORAs. Computational analysis, ligand based superposition, unbound small-molecule X-ray crystal structures and NMR analysis were utilized to understand the conformational preferences of key DORAs and excellent agreement between these orthogonal approaches was seen in the majority of compounds examined. The predominantly face-to-face (F2F) interaction observed between the distal aromatic rings was the core 3D shape motif in our design principle and was used in the development of compounds. A notable exception, however, was seen between computation and experiment for suvorexant where the molecule exhibits an extended conformation in the unbound small-molecule X-ray structure. Even taking into account solvation effects explicitly in our calculations, we nevertheless find support that the F2F conformation is the bioactive conformation. Using a dominant states approximation for the partition function, we made a comprehensive assessment of the free energies required to adopt both an extended and a F2F conformation of a number of DORAs. Interestingly, we find that only a F2F conformation is consistent with the activities reported.


Assuntos
Azepinas/química , Cristalografia por Raios X , Receptores de Orexina/química , Triazóis/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Antagonistas dos Receptores de Orexina
15.
J Biomol Screen ; 16(9): 1098-105, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821827

RESUMO

P2Y14 is a member of the pyrimidinergic GPCR family. UDP-Glc has been previously shown to activate human P2Y14, whereas UDP was unable to activate the receptor. In this study, the authors used conventional and nonconventional methods to further characterize P2Y14 and its ligands. Conventional calcium mobilization and nonconventional cellular impedance functional assays revealed that UMP and UDP selectively activated HEK cells coexpressing P2Y14 and Gα(qi5). In the impedance assays, the presence of exogenous Gα(qi5) resulted in agonist-induced Gq signaling, whereas in the absence of exogenous Gα(qi5), the signal was indicative of Gi. The authors established the first P2Y14 membrane filtration binding assay using a novel optimized expression vector and [(3)H]UDP as radioligand. UDP-Glc, UMP, and UDP dose dependently inhibited [(3)H]UDP binding in the binding assay, and saturation analysis revealed that UDP bound P2Y14 with a K(D) = 10 nM and a B(max) = 110 pmol/mg. The authors screened a phosphonate library and identified compound A, which inhibited UDP-Glc-mediated calcium signaling in the fluorometric imaging plate reader assay (IC(50) = 2.3 µM) and competed for [(3)H]UDP binding in the novel binding assay with a K(i) = 1280 nM.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Animais , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Camundongos , Pan troglodytes , Ligação Proteica , Receptores Purinérgicos P2/genética , Transdução de Sinais/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 20(19): 5822-6, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20728350

RESUMO

The discovery and SAR of a series of potent renin inhibitors possessing a novel biaryl scaffold are described herein. Molecular modeling revealed that the cyclopropylamide spacer present in 1 can be replaced by a simple, substituted aromatic ring such as a toluene in 2. The resulting compounds exhibit subnanomolar renin IC(50) and good oral bioavailability in rats.


Assuntos
Bibenzilas/química , Inibidores Enzimáticos/química , Renina/antagonistas & inibidores , Administração Oral , Amidas/química , Animais , Bibenzilas/síntese química , Bibenzilas/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Ratos , Renina/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 20(7): 2204-9, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20206513

RESUMO

The discovery and SAR of a new series of substituted amino propanamide renin inhibitors are herein described. This work has led to the preparation of compounds with in vitro and in vivo profiles suitable for further development. Specifically, challenges pertaining to oral bioavailability, covalent binding and time-dependent CYP 3A4 inhibition were overcome thereby culminating in the identification of compound 50 as an optimized renin inhibitor with good efficacy in the hypertensive double-transgenic rat model.


Assuntos
Anti-Hipertensivos/química , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Renina/antagonistas & inibidores , Renina/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Cristalografia por Raios X , Cães , Humanos , Modelos Moleculares , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Renina/química , Relação Estrutura-Atividade
18.
J Comput Chem ; 31(4): 811-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19598266

RESUMO

Recently, the vacuum-phase molecular polarizability tensor of various molecules has been accurately modeled (Truchon et al., J Chem Theory Comput 2008, 4, 1480) with an intramolecular continuum dielectric model. This preliminary study showed that electronic polarization can be accurately modeled when combined with appropriate dielectric constants and atomic radii. In this article, using the parameters developed to reproduce ab initio quantum mechanical (QM) molecular polarizability tensors, we extend the application of the "electronic polarization from internal continuu" (EPIC) approach to intermolecular interactions. We first derive a dielectric-adapted least-square-fit procedure similar to RESP, called DRESP, to generate atomic partial charges based on a fit to a QM abinitio electrostatic potential (ESP). We also outline a procedure to adapt any existing charge model to EPIC. The ability of this to reproduce local polarization, as opposed to uniform polarization, is also examined leading to an induced ESP relative root mean square deviation of 1%, relative to ab initio, when averaged over 37 molecules including aromatics and alkanes. The advantage of using a continuum model as opposed to an atom-centered polarizable potential is illustrated with a symmetrically perturbed atom and benzene. We apply EPIC to a cation-pi binding system formed by an atomic cation and benzene and show that the EPIC approach can accurately account for the induction energy. Finally, this article shows that the ab initio electrostatic component in the difficult case of the H-bonded 4-pyridone dimer, a highly polar and polarized interaction, is well reproduced without adjusting the vacuum-phase parameters.


Assuntos
Elétrons , Simulação de Dinâmica Molecular , Teoria Quântica , Alcanos/química , Hidrocarbonetos Aromáticos/química , Piridonas/química , Eletricidade Estática
19.
Bioorg Med Chem Lett ; 19(18): 5392-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19665376

RESUMO

A series of dipeptide nitriles with a thienyl alanine in P2 were identified as potent and selective cathepsin C inhibitors. Incorporation of a substituted cyclopropyl moiety in P1 effectively protects these derivatives against hydrolase activity in whole blood.


Assuntos
Catepsina C/antagonistas & inibidores , Catepsina C/metabolismo , Dipeptídeos/química , Dipeptídeos/farmacologia , Nitrilas/química , Nitrilas/farmacologia , Animais , Linhagem Celular , Dipeptídeos/sangue , Dipeptídeos/síntese química , Humanos , Nitrilas/sangue , Nitrilas/síntese química , Ratos , Relação Estrutura-Atividade
20.
J Phys Chem B ; 113(14): 4533-7, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19271713

RESUMO

Here, we computed the aqueous solvation (hydration) free energies of 52 small drug-like molecules using an all-atom force field in explicit water. This differs from previous studies in that (1) this was a blind test (in an event called SAMPL sponsored by OpenEye Software) and (2) the test compounds were considerably more challenging than have been used in the past in typical solvation tests of all-atom models. Overall, we found good correlations with experimental values which were subsequently made available, but the variances are large compared to those in previous tests. We tested several different charge models and found that several standard charge models performed relatively well. We found that hypervalent sulfur and phosphorus compounds are not well handled using current force field parameters and suggest several other possible systematic errors. Overall, blind tests like these appear to provide significant opportunities for improving force fields and solvent models.


Assuntos
Simulação por Computador , Modelos Químicos , Termodinâmica , Água/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...