Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 149(1): 014103, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981557

RESUMO

The relationship between structure and property is central to chemistry and enables the understanding of chemical phenomena and processes. Need for an efficient conformational sampling of chemical systems arises from the presence of solvents and the existence of non-zero temperatures. However, conformational sampling of structures to compute molecular quantum mechanical properties is computationally expensive because a large number of electronic structure calculations are required. In this work, the development and implementation of the effective stochastic potential (ESP) method is presented to perform efficient conformational sampling of molecules. The overarching goal of this work is to alleviate the computational bottleneck associated with performing a large number of electronic structure calculations required for conformational sampling. We introduce the concept of a deformation potential and demonstrate its existence by the proof-by-construction approach. A statistical description of the fluctuations in the deformation potential due to non-zero temperature was obtained using infinite-order moment expansion of the distribution. The formal mathematical definition of the ESP was derived using the functional minimization approach to match the infinite-order moment expansion for the deformation potential. Practical implementation of the ESP was obtained using the random-matrix theory method. The developed method was applied to two proof-of-concept calculations of the distribution of HOMO-LUMO gaps in water molecules and solvated CdSe clusters at 300 K. The need for large sample size to obtain statistically meaningful results was demonstrated by performing 105 ESP calculations. The results from these prototype calculations demonstrated the efficacy of the ESP method for performing efficient conformational sampling. We envision that the fundamental nature of this work will not only extend our knowledge of chemical systems at non-zero temperatures but also generate new insights for innovative technological applications.

2.
J Chem Theory Comput ; 14(7): 3656-3666, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29782165

RESUMO

Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination, and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and time-dependent density functional theory (TDDFT) formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as many-body perturbation theory formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems, and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...