Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15397, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965274

RESUMO

This article presents a novel approach for parameters estimation of photovoltaic cells/modules using a recent optimization algorithm called quadratic interpolation optimization algorithm (QIOA). The proposed formula is dependent on variable voltage resistances (VVR) implementation of the series and shunt resistances. The variable resistances reduced from the effect of the electric field on the semiconductor conductivity should be included to get more accurate representation. Minimizing the mean root square error (MRSE) between the measured (I-V) dataset and the extracted (V-I) curve from the proposed electrical model is the main goal of the current optimization problem. The unknown parameters of the proposed PV models under the considered operating conditions are identified and optimally extracted using the proposed QIOA. Two distinct PV types are employed with normal and low radiation conditions. The VVR TDM is proposed for (R.T.C. France) silicon PV operating at normal radiation, and eleven unknown parameters are optimized. Additionally, twelve unknown parameters are optimized for a Q6-1380 multi-crystalline silicon (MCS) (area 7.7 cm2) operating under low radiation. The efficacy of the QIOA is demonstrated through comparison with four established optimizers: Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), Salp Swarm Algorithm (SSA), and Sine Cosine Algorithm (SCA). The proposed QIO method achieves the lowest absolute current error values in both cases, highlighting its superiority and efficiency in extracting optimal parameters for both Single-Crystalline Silicon (SCS) and MCS cells under varying irradiance levels. Furthermore, simulation results emphasize the effectiveness of QIO compared to other algorithms in terms of convergence speed and robustness, making it a promising tool for accurate and efficient PV parameter estimation.

3.
J Mol Cell Cardiol ; 118: 225-236, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29627294

RESUMO

RATIONALE: MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize ß-adrenergic receptor (ßAR) signaling, ß-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the ß-arrestin-biased ßAR ligand carvedilol, we previously showed that ß-arrestin1 (not ß-arrestin2)-biased ß1AR (not ß2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes ß-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE: Here, we investigate whether ß-arrestin-mediated ßAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS: In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a ß-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on ß2ARs and ß1ARs, respectively. Mechanistically, ß-arrestin 1 or 2 regulates maturation of three newly identified ßAR/ß-arrestin-responsive miRs (ß-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of ß-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, ß-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS: Our findings indicate a novel role for ßAR-mediated ß-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Cardiotônicos/metabolismo , MicroRNAs/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carvedilol/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley
4.
Acta Pharmacol Sin ; 39(7): 1100-1109, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29565037

RESUMO

Recent advancements in genome-wide analyses and RNA-sequencing technologies led to the discovery of small noncoding RNAs, such as microRNAs (miRs), as well as both linear long noncoding RNAs (lncRNAs) and circular long noncoding RNAs (circRNAs). The importance of miRs and lncRNAs in the treatment, prognosis and diagnosis of cardiovascular diseases (CVDs) has been extensively reported. We also previously reviewed their implications in therapies and as biomarkers for CVDs. More recently, circRNAs have also emerged as important regulators in CVDs. CircRNAs are circular genome products that are generated by back splicing of specific regions of pre-messenger RNAs (pre-mRNAs). Growing interest in circRNAs led to the discovery of a wide array of their pathophysiological functions. CircRNAs have been shown to be key regulators of CVDs such as myocardial infarction, atherosclerosis, cardiomyopathy and cardiac fibrosis. Accordingly, circRNAs have been recently proposed as potential therapeutic targets and biomarkers for CVDs. In this review, we summarize the current state of the literature on circRNAs, starting with their biogenesis and global mechanisms of actions. We then provide a synopsis of their involvement in various CVDs. Lastly, we emphasize the great potential of circRNAs as biomarkers for the early detection of CVDs, and discuss several patents and recent papers that highlight the utilization of circRNAs as promising biomarkers.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/tratamento farmacológico , RNA Longo não Codificante/sangue , Animais , Biomarcadores/sangue , Humanos
5.
J Mol Cell Cardiol ; 114: 72-82, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122578

RESUMO

BACKGROUND: Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, and has been proposed as a biomarker of heart failure. We previously reported that the ß-blocker carvedilol promotes cardioprotection via ß-arrestin-biased agonism of ß1-adrenergic receptor while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that ß1-adrenergic receptor/ß-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and structure after acute myocardial infarction. METHODS AND RESULTS: Using cultured cardiomyocyte (CM) and in vivo approaches, we show that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the pro-apoptotic genes Bak1 and Klf13 in CMs. CONCLUSIONS: In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating CM survival during acute myocardial infarction.


Assuntos
Apoptose , Carvedilol/farmacologia , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Proteínas Repressoras/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/genética
6.
Cardiovasc Res ; 113(13): 1603-1614, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016706

RESUMO

AIMS: Acute myocardial infarction (MI) leads to cardiac remodelling and development of heart failure. Insufficient myocardial capillary density after MI is considered a critical determinant of this process. MicroRNAs (miRs), negative regulators of gene expression, have emerged as important players in MI. We previously showed that miR-532-5p (miR-532) is up-regulated by the ß-arrestin-biased ß-adrenergic receptor antagonist (ß-blocker) carvedilol, which activates protective pathways in the heart independent of G protein-mediated second messenger signalling. Here, we hypothesize that ß2-adrenergic receptor/ß-arrestin-responsive miR-532 confers cardioprotection against MI. METHODS AND RESULTS: Using cultured cardiac endothelial cell (CEC) and in vivo approaches, we show that CECs lacking miR-532 exhibit increased transition to a fibroblast-like phenotype via endothelial-to-mesenchymal transition (EndMT), while CECs over-expressing miR-532 display decreased EndMT. We also demonstrate that knockdown of miR-532 in mice causes abnormalities in cardiac structure and function as well as reduces CEC proliferation and cardiac vascularization after MI. Mechanistically, cardioprotection elicited by miR-532 is in part attributed to direct repression of a positive regulator of maladaptive EndMT, prss23 (a protease serine 23) in CECs. CONCLUSIONS: In conclusion, these findings reveal a pivotal role for miR-532-prss23 axis in regulating CEC function after MI, and this novel axis could be suitable for therapeutic intervention in ischemic heart disease.


Assuntos
Células Endoteliais/enzimologia , Transição Epitelial-Mesenquimal , Fibroblastos/enzimologia , MicroRNAs/metabolismo , Infarto do Miocárdio/prevenção & controle , Miocárdio/enzimologia , Serina Endopeptidases/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/patologia , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Neovascularização Fisiológica , Fenótipo , Serina Endopeptidases/genética , Transdução de Sinais , Fatores de Tempo
7.
Biomol Ther (Seoul) ; 25(1): 12-25, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035079

RESUMO

G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas ß-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of ß-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of ß-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or ß-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or ß-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.

8.
J Heart Valve Dis ; 25(2): 240-252, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989075

RESUMO

BACKGROUND: Valvular disease is characterized in part by lipid deposition, but systematic analysis of the patterns of global lipid expression in healthy and diseased valve tissues are unknown. This is due in part to tissue limitations for lipidomic preparations and technologies for evaluating lipid distribution in tissues. The study aim was to examine the application of matrixassisted laser desorption ionization imaging mass spectrometry (MALDI IMS) to the aortic valve during development and disease, as an approach to detect and map lipids and ultimately better understand valve structure and function. METHODS: Established MALDI IMS strategies were applied to thin tissue sections of heart valves to map lipids to corresponding morphological features. Healthy prenatal and adult ovine aortic valve tissues were evaluated using the developed techniques. Lipid expression levels were compared between prenatal and adult valves using Wilcoxon rank sum testing and area under the receiver operating curves. A classification algorithm was used to determine distinct lipid signatures in adult extracellular matrix (ECM) substructures, including fibrosa and spongiosa layers. Lipid patterns were examined in heart valve tissue from pediatric patients with congenital aortic valve stenosis (CAVS). RESULTS: Lipid levels were decreased in adult ovine aortic valves when compared with prenatal valves. Classification algorithms applied to lipid signatures reported distinct lipid signatures mapping to ECM substructures in the adult aortic valve, but could not distinguish amorphous structures at pre-natal day 5. In CAVS, the in-situ lipid aggregation of distinct lipid species showed unique patterning both concurrent and divergent with ECM disarray. Fatty acid content varied between normal and diseased human aortic valves. CONCLUSIONS: MALDI IMS provides a new and useful approach to evaluate lipid biology in heart valve tissue. These findings define a role for lipid regulation in aortic valve development and demonstrate patterns of lipid deregulation in congenital disease.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/química , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores Etários , Algoritmos , Animais , Animais Recém-Nascidos , Valva Aórtica/patologia , Estenose da Valva Aórtica/congênito , Estenose da Valva Aórtica/patologia , Biomarcadores/análise , Humanos , Carneiro Doméstico
9.
Am J Physiol Heart Circ Physiol ; 311(2): H371-83, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288437

RESUMO

The nonselective ß-adrenergic receptor antagonist (ß-blocker) carvedilol has been shown to protect against myocardial injury, but the detailed underlying mechanisms are unclear. We recently reported that carvedilol stimulates the processing of microRNA (miR)-199a-3p and miR-214 in the heart via ß-arrestin1-biased ß1-adrenergic receptor (ß1AR) cardioprotective signaling. Here, we investigate whether these ß-arrestin1/ß1AR-responsive miRs mediate the beneficial effects of carvedilol against simulated ischemia/reperfusion (sI/R). Using cultured cardiomyocyte cell lines and primary cardiomyocytes, we demonstrate that carvedilol upregulates miR-199a-3p and miR-214 in both ventricular and atrial cardiomyocytes subjected to sI/R. Overexpression of the two miRs in cardiomyocytes mimics the effects of carvedilol to activate p-AKT survival signaling and the expression of a downstream pluripotency marker Sox2 in response to sI/R. Moreover, carvedilol-mediated p-AKT activation is abolished by knockdown of either miR-199a-3p or miR-214. Along with previous studies to directly link the cardioprotective actions of carvedilol to upregulation of p-AKT/stem cell markers, our findings suggest that the protective roles of carvedilol during ischemic injury are in part attributed to activation of these two protective miRs. Loss of function of miR-199a-3p and miR-214 also increases cardiomyocyte apoptosis after sI/R. Mechanistically, we demonstrate that miR-199a-3p and miR-214 repress the predictive or known apoptotic target genes ddit4 and ing4, respectively, in cardiomyocytes. These findings suggest pivotal roles for miR-199a-3p and miR-214 as regulators of cardiomyocyte survival and contributors to the functional benefits of carvedilol therapy.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , MicroRNAs/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propanolaminas/farmacologia , Traumatismo por Reperfusão/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carvedilol , Linhagem Celular , Células Cultivadas , Simulação por Computador , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos
10.
Int J Mol Sci ; 17(3): 356, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26978351

RESUMO

Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert "sponge-like" effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation.


Assuntos
Doença/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Progressão da Doença , Regulação da Expressão Gênica , Humanos
11.
Int J Mol Sci ; 16(10): 23651-67, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26445043

RESUMO

Cardiovascular disease is the leading cause of death in the United States, accounting for nearly one in every seven deaths. Over the last decade, various targeted therapeutics have been introduced, but there has been no corresponding improvement in patient survival. Since the mortality rate of cardiovascular disease has not been significantly decreased, efforts have been made to understand the link between heart disease and novel therapeutic targets such as non-coding RNAs. Among multiple non-coding RNAs, long non-coding RNA (lncRNA) has emerged as a novel therapeutic in cardiovascular medicine. LncRNAs are endogenous RNAs that contain over 200 nucleotides and regulate gene expression. Recent studies suggest critical roles of lncRNAs in modulating the initiation and progression of cardiovascular diseases. For example, aberrant lncRNA expression has been associated with the pathogenesis of ischemic heart failure. In this article, we present a synopsis of recent discoveries that link the roles and molecular interactions of lncRNAs to cardiovascular diseases. Moreover, we describe the prevalence of circulating lncRNAs and assess their potential utilities as biomarkers for diagnosis and prognosis of heart disease.


Assuntos
Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Progressão da Doença , Humanos , Prognóstico
12.
Physiol Genomics ; 47(9): 376-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26152686

RESUMO

Chronic treatment with the ß-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a ß-arrestin-biased ß1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Propanolaminas/farmacologia , Animais , Cardiomiopatias/genética , Carvedilol , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/genética , Malária/genética , Camundongos Endogâmicos C57BL , Miocardite/genética , Proteínas/genética , Proteínas/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
13.
J Biomech ; 46(4): 662-9, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23294966

RESUMO

Surgical replacement of the pulmonary valve (PV) is a common treatment option for congenital pulmonary valve defects. Engineered tissue approaches to develop novel PV replacements are intrinsically complex, and will require methodical approaches for their development. Single leaflet replacement utilizing an ovine model is an attractive approach in that candidate materials can be evaluated under valve level stresses in blood contact without the confounding effects of a particular valve design. In the present study an approach for optimal leaflet shape design based on finite element (FE) simulation of a mechanically anisotropic, elastomeric scaffold for PV replacement is presented. The scaffold was modeled as an orthotropic hyperelastic material using a generalized Fung-type constitutive model. The optimal shape of the fully loaded PV replacement leaflet was systematically determined by minimizing the difference between the deformed shape obtained from FE simulation and an ex-vivo microCT scan of a native ovine PV leaflet. Effects of material anisotropy, dimensional changes of PV root, and fiber orientation on the resulting leaflet deformation were investigated. In-situ validation demonstrated that the approach could guide the design of the leaflet shape for PV replacement surgery.


Assuntos
Próteses Valvulares Cardíacas , Valva Pulmonar/cirurgia , Alicerces Teciduais , Animais , Anisotropia , Fenômenos Biomecânicos , Simulação por Computador , Elastômeros , Análise de Elementos Finitos , Imageamento Tridimensional , Modelos Animais , Modelos Cardiovasculares , Desenho de Prótese , Valva Pulmonar/anatomia & histologia , Valva Pulmonar/diagnóstico por imagem , Ovinos , Engenharia Tecidual , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...