Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Case Rep ; 18(10): 3753-3758, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37636536

RESUMO

Colloid cysts are benign intracranial lesions, typically located in the anterior portion of the third ventricle near the interventricular foramina of Monro. The cysts usually consist of an epithelial lining filled with viscous gelatinous material of various components. Colloid cysts are generally asymptomatic, but once symptomatic, they can present in a variety of ways, including headaches, vomiting, visual and memory problems, and vertigo. Colloid cysts present classically on imaging as a well-delineated hyperattenuating lesion on unenhanced radiological modalities. Herein, we report a case of a patient who presented with hydrocephalus caused by a sizeable colloid cyst which demonstrated atypical imaging findings in the form of hypodensity on CT and hyperintensity on T2WI, making them difficult to identify and easy to miss. Although this atypical imaging appearance is uncommon with yet unknown true incidence, it is prudent to be aware of it because early management of colloid cysts has a favorable outcome, in contrast to untreated cysts that are associated with higher rates of morbidity and mortality. Additionally, we provide a comprehensive, evidence-based review of the medical entity of intracranial colloid cysts with highlights of current postulated pathological theories and management algorithms.

3.
Virol J ; 19(1): 185, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371185

RESUMO

BACKGROUND: Equine influenza is an important cause of respiratory disease in equids. The causative virus; EIV, is highly variable and can evolve by accumulation of mutations, particularly in the haemagglutinin (HA) gene. Currently, H3N8 is the sole subtype circulating worldwide with Florida clade 1 (FC1) is most prevalent in the Americas and FC2 in Asia and Europe. In Egypt, EIV was detected in two occasions: subtype H7N7 in 1989 and subtype H3N8 (FC1) in 2008. No data is available on the circulation pattern of EIV during the last decade despite frequent observation of suspected cases. METHODS: Twenty-two nasal swabs were collected from vaccinated and non-vaccinated horses showing respiratory signs suggestive of EIV infection in 2017-18. Three additional swabs were retrieved during a national race event in January 2018 from Arabian mares with high fever, gait stiffness and dry cough. Samples were screened by RT-qPCR and HA1 domain of the hemagglutinin gene was amplified and sequenced for sequence and phylogenetic analysis. RESULTS: RT-qPCR screening revealed that only the 3 samples from the race were positive with cycle thresholds ranging from 16 to 21 indicating high viral load. Isolation attempts in hen's eggs were unsuccessful. Sequence analysis of the HA1 domain gene has revealed two identical nucleotide sequences, while the third contained 3 synonymous mutations. Phylogenetic analysis clustered study sequences with recent FC2 sequences from Europe. Amino acid alignments revealed 14 and 13 amino acid differences in the study sequences compared to A/equine/Egypt/6066NANRU-VSVRI/08 (H3N8) and A/equine/Kentucky/1997 (H3N8), respectively, available as EIV vaccines in Egypt. Nine amino acids were different from A/equine/Richmond/1/2007 (H3N8), the recommended FC2 vaccine strain by the world organization of animal health expert surveillance panel (OIE-ESP), two of which were unique to the Egyptian sequences while the remaining 7 changes were shared with the FC2-144V subgroup detected in the United Kingdom from late 2015 to 2016. CONCLUSIONS: The study represents the first reported detection of FC2-144V related EIV from Arabian mares in Egypt, and probably from the entire middle east region. The presented information about EIV epidemiology and spread may require reconsideration of the vaccine strains used in the national vaccination programs.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H7N7 , Infecções por Orthomyxoviridae , Cavalos , Animais , Feminino , Vírus da Influenza A Subtipo H3N8/genética , Egito/epidemiologia , Filogenia , Galinhas , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/prevenção & controle , Hemaglutininas , Aminoácidos/genética
4.
BMC Vet Res ; 18(1): 358, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163027

RESUMO

Infectious laryngotracheitis (ILT) is an economically crucial respiratory disease of poultry that affects the industry worldwide. Vaccination is the principal tool in the control of the disease outbreak. In an earlier study, we comprehensively characterized the circulating strains in Egypt and identified both CEO-like and recombinant strains are dominant. Herein, we investigated the pathogenicity of two virulent strains representing the CEO-like (Sharkia_2018) and recombinant strain (Qalubia_2018). Additionally, we evaluated the efficacy of different commercial vaccines (HVT-LT, CEO, and TCO) against the two isolates in terms of the histopathological lesion scores and the viral (gC) gene load. A total of 270 White Leghorn-specific pathogen-free male chicks were divided into nine groups of 30 birds, each housed in separate isolators. Birds were distributed as follows; one group was non-vaccinated, non-challenged, and served as a negative control. Two groups were non-vaccinated and infected with the two isolates of interest and served as a positive control to test the pathogenicity. Six groups were vaccinated and challenged; two groups were vaccinated with vector vaccine at one day old. The other four groups were vaccinated with either the CEO- or TCO- vaccine (two groups each) at four weeks of age. Three weeks after vaccination, birds were infected with the virulent ILTV isolates. The larynx, trachea, and harderian gland samples were taken at 1, 3, and 7 days post-infection for histopathological lesion score and molecular detection. Notably, The recombinant strain was more virulent and pathogenic than CEO-like ILTV strains. Moreover, the TCO vaccine was less immunogenic than the vector and CEO vaccines.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Egito/epidemiologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Masculino , Eficácia de Vacinas , Vacinas Atenuadas , Virulência
5.
Artigo em Inglês | MEDLINE | ID: mdl-35243121

RESUMO

Blue rubber bleb nevus syndrome (BRBNS) is a rare disease that presents as cutaneous and extra-cutaneous vascular malformations, most commonly affecting the gastrointestinal (GI) tract. We report a case of adult onset BRBNS in an African American male with vascular lesions isolated to the jejunum without any cutaneous manifestations. Physicians should recognize that BRBNS can present without skin involvement and may have complications from visceral organ involvement. Treatment of BRBNS is mainly symptomatic and aims at preserving the GI tract as much as possible. BRBNS may also present as delayed recurrence after surgical or endoscopic interventions.

6.
Front Microbiol ; 12: 743580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899631

RESUMO

Prokaryotes have evolutionarily acquired an immune system to fend off invading mobile genetic elements, including viral phages and plasmids. Through recognizing specific sequences of the invading nucleic acid, prokaryotes mediate a subsequent degradation process collectively referred to as the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system. The CRISPR-Cas systems are divided into two main classes depending on the structure of the effector Cas proteins. Class I systems have effector modules consisting of multiple proteins, while class II systems have a single multidomain effector. Additionally, the CRISPR-Cas systems can also be categorized into types depending on the spacer acquisition components and their evolutionary features, namely, types I-VI. Among CRISPR/Cas systems, Cas9 is one of the most common multidomain nucleases that identify, degrade, and modulate DNA. Importantly, variants of Cas proteins have recently been found to target RNA, especially the single-effector Cas13 nucleases. The Cas13 has revolutionized our ability to study and perturb RNAs in endogenous microenvironments. The Cas13 effectors offer an excellent candidate for developing novel research tools in virological and biotechnological fields. Herein, in this review, we aim to provide a comprehensive summary of the recent advances of Cas13s for targeting viral RNA for either RNA-mediated degradation or CRISPR-Cas13-based diagnostics. Additionally, we aim to provide an overview of the proposed applications that could revolutionize our understanding of viral-host interactions using Cas13-mediated approaches.

7.
Intervirology ; 64(3): 156-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34023833

RESUMO

INTRODUCTION: Gallid alphaherpesvirus 2 (GaHV-2) is a highly contagious oncogenic virus that causes Marek's disease in chickens and occasionally in turkeys. Among 100 genes identified in GaHV-2 genome, the Meq gene appears to involve viral virulence, oncogenicity, and genetic diversity. Despite the use of Meq gene sequences in phylogenetic classification of GaHV-2 strains circulating in many countries worldwide, no integrated system exists yet. METHODS: Turkeys from 2 commercial Egyptian farms were presented with signs of dullness, dehydration, and emaciation. Samples prepared from the internal organs were examined by histopathology and immunohistochemistry. Pools of the internal organs were analyzed by PCR for identification of GaHV-2, avian leucosis virus, and reticuloendotheliosis virus. The Meq gene of an Egyptian strain was sequenced and analyzed in comparison to 40 reference strains for generation of a universal system for phylogenetic classification of GaHV-2 strains. RESULTS: Gross and histopathological examination revealed grayish-white soft masses in the internal organs characterized by diffuse infiltration of pleomorphic neoplastic cells. All lymphoma cells were identified as T-lymphocytes of CD3+ phenotype. Samples of both farms were only positive for GaHV-2 by PCR. Sequence analysis of the Meq gene has classified the current turkey strain as related to the Egyptian strains identified in chicken in 2012. A universal phylogenetic system for classification of GaHV-2 strains into 4 clusters was proposed. The vaccine strains were all grouped in cluster 2, and most of the classical American strains belonged to cluster 4. Cluster 1 was further divided into 3 subclusters (1.1-1.3). CONCLUSION: GaHV-2 was identified in turkeys for the first time in Africa and the Middle East. Sequence analysis of the Meq gene of the Egyptian strain along with a wide array of the global strains has enabled the construction of a novel phylogenetic classification system.


Assuntos
Doença de Marek , Doenças das Aves Domésticas , Animais , Galinhas , Egito , Filogenia , Perus
8.
Sci Rep ; 11(1): 4548, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633224

RESUMO

The addition of a methyl group to the N6-position of adenosine (m6A) is considered one of the most prevalent internal post-transcriptional modifications and is attributed to virus replication and cell biology. Viral epitranscriptome sequencing analysis has revealed that hemagglutinin (HA) mRNA of H1N1 carry eight m6A sites which are primarily enriched in 5'-DRACH-3' sequence motif. Herein, a large-scale comparative m6A analysis was conducted to investigate the conservation patterns of the DRACH motifs that corresponding to the reference m6A sites among influenza A viruses. A total of 70,030 complete HA sequences that comprise all known HA subtypes (H1-18) collected over several years, countries, and affected host species were analysed on both mRNA and vRNA strands. The bioinformatic analysis revealed the highest degree of DRACHs conservation among all H1 sequences that clustered largely in the middle and in the vicinity to 3' end with at least four DRACH motifs were conserved in all mRNA sequences. The major HA-containing subtypes displayed a modest DRACH motif conservation located either in the middle region of HA transcript (H3) or at the 3' end (H5) or were distributed across the length of HA sequence (H9). The lowest conservation was demonstrated in HA subtypes that infect mostly the wild type avian species and bats. Interestingly, the total number and the conserved DRACH motifs in the vRNA were found to be much lower than those observed in the mRNA. Collectively, the identification of putative m6A topology provides a foundation for the future intervention of influenza infection, replication, and pathobiology in susceptible hosts.


Assuntos
Adenosina/análogos & derivados , Sequência Conservada , Evolução Molecular , Regulação Viral da Expressão Gênica , Vírus da Influenza A/genética , Influenza Humana/virologia , RNA Viral , Motivos de Aminoácidos , Animais , Aves , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/classificação , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/virologia , Filogenia
9.
Adv Exp Med Biol ; 1352: 15-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35132592

RESUMO

INTRODUCTION: Coronaviruses (CoVs) are large, enveloped and positive-sense RNA viruses which are responsible for a range of upper respiratory and digestive tract infections. Interest in coronaviruses has recently escalated due to the identification of a newly emerged coronavirus named severe acute respiratory syndrome 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. In this chapter, we summarise molecular virological features of coronaviruses and understand their molecular mechanisms of replication in guiding the control of the global COVID-19 pandemic. METHODS: We applied a holistic and comparative approach to assess the current understanding of coronavirus molecular virology and identify research gaps among different human coronaviruses. RESULTS: Coronaviruses can utilise unique strategies that aid in their pathogenicity, replication and survival in multiple hosts. Replication of coronaviruses involves novel mechanisms such as ribosomal frameshifting and the synthesis of both genomic and sub-genomic RNAs. We summarised the key components in coronavirus molecular biology and molecular determinants of pathogenesis. Focusing largely on SARS-CoV-2 due to its current importance, this review explores the virology of recently emerged coronaviruses to gain an in-depth understanding of these infectious diseases. CONCLUSIONS: The presented information provides fundamental bottlenecks to devise future disease control and management strategies to curtail the impact of coronaviruses in human populations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
10.
Viruses ; 12(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883050

RESUMO

Until vaccines and effective therapeutics become available, the practical solution to transit safely out of the current coronavirus disease 19 (CoVID-19) lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of results, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected NHS patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. Therefore, this system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


Assuntos
Inteligência Artificial , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/virologia , Animais , COVID-19 , Teste para COVID-19 , Chlorocebus aethiops , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Cães , Humanos , Células Madin Darby de Rim Canino , Pandemias , Pneumonia Viral/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade , Células Vero
11.
Front Cell Dev Biol ; 8: 543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760718

RESUMO

The addition of a methyl group to the N6 position of adenosine (m6A) is the most common posttranscriptional RNA modification, and it regulates most steps of RNA metabolism including splicing, stability, translation, nuclear-export, and RNA structures. Besides cellular RNA, m6A modifications have also been detected on viral RNA. A range of recent studies have demonstrated the crucial roles of m6A in the virus-host interactions; however, m6A cellular machineries are only characterized in limited mammalian species. Herein, we aim to present comprehensive evolutionary insights into major m6A writers, erasers, and readers and draw a comparative structural analysis between avian and mammalian m6A-associated machineries. The comparative collinearity on the chromosomal scale revealed that the majority of m6A-related genes were found less syntenic even among avian species. Genetic analysis of avian m6A erasers revealed a distinct phylogenetic clustering compared to mammalian orthologs and shared a weak percent (55%) identity with mammalian species with low identity percentage (55%). The overall comparative three-dimensional (3D) structure analyses among different mammalian species were maintained through synonymous structural mutations. Unlike erasers, the putative 3D structures in the active sites as for the aromatic cage in YTH-domain of YTHDC1 and two pivotal loops in MTD-domains in METTL3 exhibited structural alterations in chicken. In conjunction with in silico investigations, influenza viruses significantly downregulated gene the transcription of m6A writers and erasers, whereas m6A readers were moderately regulated in chicken fibroblasts. In light of these findings, future detailed biochemical and crystallographic studies are warranted to define the roles of m6A machinery in regulating both viral and cellular RNA metabolism in avian species.

13.
Arch Virol ; 165(3): 661-670, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31938839

RESUMO

Infectious laryngotracheitis (ILT) is a respiratory disease that causes significant economic losses in the poultry industry worldwide. In this study, ILT outbreaks were reported on 30 farms located in eight Egyptian governorates between January 2018 and May 2019. Gross examination of diseased chickens revealed congestion and hemorrhage of laryngeal and tracheal mucosa with fibrinohemorrhagic casts and/or caseous material in the lumens. Histopathological examination showed epithelial sloughing, syncytium formation, heterophilic exudation, and development of eosinophilic intranuclear inclusion bodies. Infectious laryngotracheitis virus (ILTV) antigen was detected in the tracheal epithelium, infiltrated inflammatory cells, and syncytial cells, using immunohistochemistry. PCR targeting a portion of the thymidine kinase gene was further utilized to confirm the presence of ILTV DNA. The complete coding sequences of three envelope glycoprotein genes, gG, gD, and gJ, and a partial sequence of the infected cell polypeptide 4 (ICP4) gene from samples representing all of the farms and disease outbreaks were determined. Five prototype strains with unique sequences were chosen for detailed molecular characterization. Sequence comparisons and phylogenetic analysis of the partial ICP4 gene revealed that two strains were chicken embryo origin (CEO)-vaccine-like strains, and three were tissue culture origin (TCO)-vaccine-like strains. Analysis of the gJ gene sequence indicated that all of the strains were CEO vaccine-like strains. It was predicted that the latter three strains were recombinants of CEO- and TCO-vaccine-like strains. In conclusion, immunohistochemistry coupled with multi-genomic PCR sequencing proved to be efficient for identification and typing of ILTV strains during disease outbreaks. Both CEO-vaccine-like and recombinant virus strains were circulating in Egypt during the 2018 and 2019 outbreaks.


Assuntos
Galinhas/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/genética , Proteínas do Envelope Viral/genética , Animais , Sequência de Bases , Embrião de Galinha , DNA Viral/genética , Surtos de Doenças/veterinária , Egito , Glicoproteínas/genética , Infecções por Herpesviridae/virologia , Imuno-Histoquímica , Reação em Cadeia da Polimerase , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA , Vacinas Virais/uso terapêutico
14.
Mol Cell Probes ; 50: 101511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953221

RESUMO

Highly pathogenic avian influenza H5N1 virus causes heavy losses in poultry farms worldwide. Molecular diagnostic techniques like RT-PCR and real-time RT-PCR are considered the gold standard for identification of H5 influenza viruses in clinical samples. These techniques are hampered by the need of well-equipped laboratories, large space requirement, and relatively long time-to-result. Recombinase polymerase amplification (RPA) assay represents an excellent alternative to PCR since it is more simple, rapid, economic, and portable. Reverse transcription RPA (RT-RPA) assay was recently developed for sensitive and specific detection of H5N1 virus in 6-10 min. To ensure the accuracy of the developed assay, two approaches for using a positive control were evaluated in this study. These approaches included: 1) all-in-one (internal positive control; IPC), 2) two-tubes-per-one-sample (external positive control; EPC). Sigma virus (SIGV) RNA and turkey mitochondrial DNA were tested as positive controls in both approaches. For all-in-one approach, both targets (H5 and IPC) were strongly inhibited. In contrast, very good amplification signals were obtained for the two types of EPC with no effect on the analytical sensitivity and specificity of H5 RT-RPA assay in two-tubes-per-one-sample approach. The performance of EPC-based H5 RT-RPA was further validated using 13 tracheal swabs. The results were compared to real-time RT-PCR and proved superior specificity in detecting H5N1 but not H5N8 viruses. Inclusion of EPC did not affect the aptitude of both assays in terms of sensitivity, specificity and reproducibility. In conclusion, the two-tubes-per-one-sample approach was more reliable to control the false negative results in H5 RT-RPA assay.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Recombinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Animais , Galinhas/virologia , Influenza Aviária/virologia , Padrões de Referência
15.
Front Cell Dev Biol ; 8: 587108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511112

RESUMO

The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.

18.
Ann Transl Med ; 7(17): 420, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31660319

RESUMO

Valve replacement in high-risk patients with severe aortic stenosis has undergone a huge paradigm shift in the recent years in terms of procedural details and vascular access site for patients who have poor peripheral access. Carotid artery is one of the more promising access sites which has been proven to provide a good alternative site with comparable outcomes to transfemoral approach. In this manuscript, we will provide a review of the current literature on transaortic, transapical, transaxillary and transcarotid approaches to transcatheter aortic valve replacement (TAVR) while focusing on the transcarotid approach.

19.
Viruses ; 11(1)2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646528

RESUMO

Avian coronaviruses (ACoVs) are continuously evolving and causing serious economic consequences in the poultry industry and around the globe. Owing to their extensive genetic diversity and high mutation rates, controlling ACoVs has become a challenge. In this context, the potential contribution of wild birds in the disease dynamics, especially in domesticated birds, remains largely unknown. In the present study, five hundred fifty-seven (n = 557) cloacal/fecal swabs were collected from four different wild bird species from eight Egyptian governorates during 2016 and a total of fourteen positive isolates were used for phylodynamics and evolutionary analysis. Genetic relatedness based on spike (S1) gene demonstrated the clustering of majority of these isolates where nine isolates grouped within Egy/variant 2 (IS/885 genotype) and five isolates clustered within Egy/variant 1 (IS/1494/06 genotype). Interestingly, these isolates showed noticeable genetic diversity and were clustered distal to the previously characterized Egy/variant 1 and Egy/variant 2 in Egyptian commercial poultry. The S1 gene based comparison of nucleotide identity percentages revealed that all fourteen isolates reported in this study were genetically related to the variant GI-23 lineage with 92⁻100% identity. Taken together, our results demonstrate that ACoVs are circulating in Egyptian wild birds and highlight their possible contributions in the disease dynamics. The study also proposes that regular monitoring of the ACoVs in wild birds is required to effectively assess the role of wild birds in disease spread, and the emergence of ACoVs strains in the country.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Infecções por Coronavirus/veterinária , Gammacoronavirus/genética , Variação Genética , Filogenia , Animais , Infecções por Coronavirus/epidemiologia , Egito/epidemiologia , Evolução Molecular , Fezes/virologia , Gammacoronavirus/classificação , Genoma Viral , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...