Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 235, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570380

RESUMO

A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes. Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe3O4, Fe3O4@PDA, and Fe3O4@PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe3O4@PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 102 and 1.0 × 107 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L. ivanovii, L. innocua, and L. seeligeri) or other tested bacteria such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times.


Assuntos
Aptâmeros de Nucleotídeos , Listeria monocytogenes , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes , Aptâmeros de Nucleotídeos/química , Escherichia coli , Fenômenos Magnéticos
2.
Crit Rev Anal Chem ; : 1-12, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191651

RESUMO

Continuous monitoring of pathogens finds applications in environmental, medical, and food industry settings. Quartz crystal microbalance (QCM) is one of the promising methods for real-time detection of bacteria and viruses. QCM is a technology that utilizes piezoelectric principles to measure mass and is commonly used in detecting the mass of chemicals adhering to a surface. Due to its high sensitivity and rapid detection times, QCM biosensors have attracted considerable attention as a potential method for detecting infections early and tracking the course of diseases, making it a promising tool for global public health professionals in the fight against infectious diseases. This review first provides an overview of the QCM biosensing method, including its principle of operation, various recognition elements used in biosensor creation, and its limitations and then summarizes notable examples of QCM biosensors for pathogens, focusing on microfluidic magnetic separation techniques as a promising tool in the pretreatment of samples. The review explores the use of QCM sensors in detecting pathogens in various samples, such as food, wastewater, and biological samples. The review also discusses the use of magnetic nanoparticles for sample preparation in QCM biosensors and their integration into microfluidic devices for automated detection of pathogens and highlights the importance of accurate and sensitive detection methods for early diagnosis of infections and the need for point-of-care approaches to simplify and reduce the cost of operation.

3.
Biodegradation ; 34(3): 263-281, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806955

RESUMO

Tramates trogii biomass was immobilized in carboxymethyl cellulose-lignin composite beads via cross-linking with Fe(III) ions (i.e., Fe(III)-CMC@Lig(1-4)@FB). The composite beads formulations were used for the adsorption and degradation of bisphenol A (BPA) using the free fungal biomass as a control system. The maximum adsorption capacity of the free fungal biomass and Fe(III)-CMC@Lig-3@FB for BPA was found to be 57.8 and 95.6, mg/g, respectively. The degradation rates of BPA were found to be 87.8 and 89.6% for the free fungal biomass and Fe(III)CMC@Lig-3@FB for 72 h in a batch reactor, respectively. Adsorption of BPA on the free fungal biomass and Fe(III)CMC@Lig-3@FB fungal preparations described by the Langmuir and Temkin isotherm models, and the pseudo-second-order kinetic model. The values of Gibbs free energy of adsorption (ΔG°) were - 20.7 and - 25.8 kJ/mol at 298 K for BPA on the free fungal biomass and Fe(III)-CMC@Lig-3@FB beads, respectively. Moreover, the toxicities of the BPA and degradation products were evaluated with three different test organisms: (i) a freshwater micro-crustacean (Daphnia magna), (ii) a freshwater algae (Chlamydomonas reinhardti), and (iii) a Turkish winter wheat seed (Triticum aestivum L.). After treatment with the Fe(III)CMC@Lig-3@FB formulation, the degradation products had not any significant toxic effect compared to pure BPA. This work shows that the prepared composite bioactive system had a high potential for degradation of BPA from an aqueous medium without producing toxic end-products. Thus, it could be a good candidate for environmentally safe biological methods.


Assuntos
Carboximetilcelulose Sódica , Trametes , Poluentes Químicos da Água , Adsorção , Biomassa , Compostos Férricos , Cinética , Lignina , Purificação da Água/métodos
4.
Food Chem ; 382: 132353, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152024

RESUMO

Magnetic chitosan beads and quartz crystal microbalance chip were decorated with lysozyme specific aptamer for isolation and detection of lysozyme, respectively. The lysozyme specific aptamer was immobilized on poly (dopamine) coated magnetic chitosan beads and the chip via Schiff base reaction. The percentage of the removal efficiency and purity of the isolated lysozyme from egg white were 87.6% and 91.8%, respectively. Further, the sensor system was contacted with different concentrations of lysozyme and other test proteins. This sensor system provided a method for the label-free, concentration-dependent, and selective detection of lysozyme with an observed detection limit of 17.9 ± 0.6 ng/mL. The sensor system was very selective and not significantly responded to the other tested proteins such as ovalbumin, trypsin, cytochrome C, and glucose oxidase. The prepared new sensor system showed a good durability and a high sensitivity for determination of lysozyme from solutions and whole egg white.


Assuntos
Técnicas Biossensoriais , Quitosana , Técnicas Biossensoriais/métodos , Fenômenos Magnéticos , Magnetismo , Muramidase/química , Técnicas de Microbalança de Cristal de Quartzo/métodos
5.
Food Chem ; 366: 130699, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348221

RESUMO

In this work, magnetic chitosan (MCH) beads were synthesized by phase-inversion method, and grafted with polydopamine (PDA) and then used for direct immobilization of Candida rugosa lipase by Schiff base reaction. The amount of immobilized enzyme and the retained activity were found to be 47.3 mg/g and 72.8%, respectively, at pH 7.0, and at 25 °C. The apparent Km (9.7 mmol/L), and Vmax (384 U/mg) values of the immobilized lipase were significantly changed compared to the free lipase. The MCH@PDA-lipase was better thermal and storage stability at different temperatures than those of the free lipase. In hexane medium, the esterification reaction results showed that the maximum conversions of isoamylalcohol and isopentyl alcohol to isoamyl acetate and isopentyl acetate using the MCH@PDA-lipase were found to be 98.4 ± 1.3% and 73.7 ± 0.7%, respectively. These results showed that the MCH@PDA-lipase can be used as an operative immobilized enzyme system for many biotechnological applications.


Assuntos
Quitosana , Lipase , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Ésteres , Concentração de Íons de Hidrogênio , Lipase/metabolismo , Fenômenos Magnéticos , Saccharomycetales
6.
Talanta ; 239: 123074, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809985

RESUMO

A Surface Plasmon Resonance (SPR) aptasensor was developed for the detection of Brucella melitensis (B. melitensis) in milk samples. Brucellosis is a bacterial zoonotic disease with global distribution caused mostly by contaminated milk or their products. Aptamers recognizing B. melitensis were selected following a whole bacteria-SELEX procedure. Two aptamers were chosen for high affinity and high specificity. The high affinity aptamer (B70 aptamer) was immobilized on the surface of magnetic silica core-shell nanoparticles for initial purification of the target bacteria cells from milk matrix. Another aptamer, highly specific for B. melitensis cells (B46 aptamer), was used to prepare SPR sensor chips for sensitive determination of Brucella in eluted samples from magnetic purification since direct injection of milk samples to SPR sensor chips is known for a high background unspecific signal. Thus, we integrated a quick and efficient magnetic isolation step for subsequent instant detection of B. melitensis contamination in one ml of milk sample by SPR with a LOD value as low as 27 ± 11 cells.


Assuntos
Aptâmeros de Nucleotídeos , Brucella melitensis , Animais , Limite de Detecção , Leite , Ressonância de Plasmônio de Superfície
7.
Food Chem ; 342: 128295, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33092916

RESUMO

Here, the macroporous poly(hydroxylmethyl methacrylate/glycidyl methacrylate [p(HEMA-GMA)] cryogels with large porous surface were prepared, and then the epoxy groups of the p(HEMA-GMA) cryogels were systematically modified into strong and weak cationic groups. The effects of initial protein concentrations, adsorption time, pH, salt concentrations and temperatures on adsorption efficiency of cation exchange cryogels for lysozyme were determined. The maximum lysozyme adsorption capacities of strong and weak cation exchange cryogels were found to be 188.3 and 79.7 mg/g cryogel at 25 °C, respectively. The performance of the strong cationic cryogel was evaluated by purification of lysozyme from egg white. The activity of the isolated lysozyme was found to be 21,347 U/mg. The cationic cryogel maintained its expected high adsorption capacity and efficiency of the purification levels during repeated adsorption desorption processes. Finally, the purpose of this work is the design a cation exchange system for purification of lysozyme from egg-white.


Assuntos
Galinhas , Criogéis/química , Clara de Ovo/química , Muramidase/química , Muramidase/isolamento & purificação , Adsorção , Animais , Concentração de Íons de Hidrogênio , Troca Iônica , Temperatura , Fatores de Tempo
8.
Environ Sci Pollut Res Int ; 27(34): 43340-43358, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737786

RESUMO

Poly(hydroxylmethyl methacrylate-co-glycidyl methacrylate) (p(HEMA-GMA)) macroporous cryogel with high density of epoxy groups was synthesized, and the epoxy groups of the cryogel were modified into phosphonate groups. The effects of dye concentrations, adsorption time, pH, salt concentration, and adsorption temperature on the adsorption of Direct Blue-53 (DB-53) and Reactive Blue-160 (RB-160) dyes were studied. The maximum adsorption capacity was found to be 245.3 and 155.8 mg/g (0.255 or 0.119 mmol/g) for the DB-53 and RB-160 dyes, respectively. The higher adsorption capacity achieved for the DB-53 compared with the RB-160 dye can result from the pendant primary amino groups of the DB-53 dye as well as the smaller size of the dye molecule. The Langmuir isotherm model and the pseudo-second-order kinetic model well described the experimental data. The p(HEMA-GMA)-PO42- adsorbent has many operational advantages for the removal of pollutants. It could be a promising adsorbent to be used in industrial wastewater treatment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Criogéis , Compostos de Epóxi , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos
9.
Methods Enzymol ; 630: 111-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31931982

RESUMO

Although enzymes are known for their excellent catalytic performance, industrial, medical or biotechnological applications should overcome some drawbacks like long-term stability under specific conditions of the application. Immobilized enzymes have offered advantages over soluble counterparts in many industrial and laboratory scale applications by increasing operational stability and reusability. When the immobilization matrix has magnetic properties, an additional advantage is obtained as simpler processing. Iron-based superparamagnetic nano-sized particles has large surface area for bio-compatible applications are especially in focus. Adding nanofibrous polymers to magnetic nanoparticles has been an excellent way to increase efficiency of biocatalyst immobilization by further increasing loading capacity. This chapter explains various magnetic enzyme-nanoparticles based preparations with potential for future industrial applications like invertase, lipase and as model studies and focus on the nanofibrous polymer brush grafting as a way to increase catalytic efficiency of magnetic nanoparticles.


Assuntos
Enzimas Imobilizadas/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanofibras/química , Polímeros/química , Saccharomyces cerevisiae/enzimologia , beta-Frutofuranosidase/química , Biocatálise , Biotecnologia , Estabilidade Enzimática , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Imãs/química , Saccharomyces cerevisiae/química , Dióxido de Silício/química
10.
Talanta ; 206: 120218, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514867

RESUMO

Proteinase K (ProK) is used for the degradation of proteins in cell lysates to isolate nucleic acids, and for the speciation of proteins for mass spectrometry analysis. In this work, a novel and sensitive immobilization process was developed for examination of protein mixtures by combining MALDI-ToF-MS and nLC-TIMS-ToF-MS/MS systems. To achieve these goals, magnetic nanoparticles (MPs) were prepared via thermal coprecipitation reaction under alkaline condition. The MPs were grafted with a silica layer (i.e., 3-(2,3-epoxypropoxy) propyltrimethoxysilane; EPTES) containing reactive epoxy groups. Then, the silica-grafted magnetic particles were coated with a long chain hydrophilic poly(ethylene glycol) diamine polymer (PEGDAP). The prepared materials were characterized by the Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), scanning electron microscopy (SEM) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The VSM data show that the MPs@EPTES@PEGDAP has paramagnetic performance with a saturation magnetization of approximately 32.3 emu g-1. Proteinase K (EC 3.4.21.64) was covalently immobilized on the MPs@EPTES by reaction of its epoxy groups with amine groups of the enzyme. On the other hand, the ProK was immobilized on the MPs@EPTES@PEGDAP after activation with glutaraldehyde and the immobilization reaction was realized by the coupling reaction between aldehyde groups of the support and amine groups of the enzyme. The amounts of immobilized ProK on the MPs@EPTES and MPs@EPTES@PEGDAP were found to be 27.4 and 19.6 mg g-1and the retained activities were determined to be 29 and 87%, respectively. For the first time, some important features such as thermal and storage stabilities, reusability and potential use in protein speciation for mass spectrometry-based techniques were also evaluated. For examples, after six weeks of storage at 4 °C, the immobilized ProK on the MPs@EPTES@PEGDAP-ProK still maintained 59% of its initial activity. However, at the end of the six-week storage period, its free counterpart had lost all of its initial activity. The immobilized ProK was also utilized for degradation and identification of model proteins (i.e., α-2-HS glycoprotein, ß-casein, bovine serum albumin and immunoglobulin). After enzymatic treatment, the digested peptides were analyzed and mapped by using nLC-TIMS-ToF-MS/MS systems.


Assuntos
Endopeptidase K/química , Enzimas Imobilizadas/química , Nanopartículas de Magnetita/química , Fragmentos de Peptídeos/análise , Proteínas/química , Cinética , Estrutura Molecular , Polietilenoglicóis/química , Proteólise , Dióxido de Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
11.
Appl Biochem Biotechnol ; 190(4): 1224-1241, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31735978

RESUMO

In this work, novel silica hybrid magnetic particles with biocompatible surface were designed as a support for enzyme immobilization, and the immobilized chymotrypsin (CT) performance was clarified as a model biocatalyst. CT is used in food technology for drink clarification and protein hydrolysis. The enzyme was directly immobilized onto polydopamine-grafted magnetic silica particles (MNP@SiO2@PDA-CT) via the Schiff base reaction. Immobilized enzyme had broadened for both pH and temperature profiles compared with the native CT. The MNP@SiO2@PDA-CT system also improved in thermostability compared with the native enzyme. The immobilized CT was operated in a continuous enzyme reactor (CER) for the hydrolysis of different proteins (i.e., cytochrome c (Cyt c), human serum albumin (HSA), human immunoglobulin G (HIgG), and lysozyme (Lys)). The peptide synthesis rate was shown to decrease as a function of increasing flow rate. The catalytic activity of the CER remained stable for 6.0 h in a continuous operation period; thus, the presented method may increase applicability in the food technology area. The immobilized CT in the CER showed a good hydrolysis performance for all the tested model proteins. The peptides hydrolyzed from the tested proteins were analyzed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS). Results show that the MNP@SiO2@PDA-CT system also permits for the applicability in the area of proteomic research.


Assuntos
Materiais Biocompatíveis/química , Quimotripsina/metabolismo , Biossíntese Peptídica , Dióxido de Silício/química , Animais , Reatores Biológicos , Catálise , Bovinos , Galinhas , Citocromos c/metabolismo , Clara de Ovo , Enzimas Imobilizadas/metabolismo , Tecnologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Magnetismo , Muramidase/metabolismo , Proteômica , Espalhamento de Radiação , Bases de Schiff , Albumina Sérica Humana/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
12.
Talanta ; 200: 263-271, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31036183

RESUMO

In this work, a novel quartz crystal microbalance (QCM) aptasensor is designed for the diagnosis of Brucella melitensis bacteria, which affects the Mediterranean fever (brucellosis) from the zoonotic diseases that are very common in the Middle East Countries. The method is based on the selection of B. melitensis bacterium from solutions using B. melitensis specific binding aptamer (Apt) attached magnetic nanoparticles. The surface of the magnetic nanoparticles (i.e.,Fe3O4) was modified by 3-aminopropyltriethoxysilane (APTES) and then grafted with a hydrophilic macromonomer poly(ethyleneglycol)-methacrylate (PEG-MA) as a first block polymer and glycidylmethacrylate (GMA) as a second block functional polymer via atom transfer radical polymerization (ATRP) method [Fe3O4 @SiO2 @p(PEG-MA-GMA)], then, the specific binding aptamer was immobilized. The aptamer immobilized magnetic nanoparticles were used for the pre-concentration of the target bacterium, and the same aptamer sequence was also immobilized on the QCM chip and used for the quantitative detection of B. melitensis using QCM aptasensor. The detection limits of the QCM aptasensor were in the range 1.02-1.07 CFU mL-1, with recoveries up to 79%. The synthesized [Fe3O4 @SiO2 @p(PEGMA-GMA)] nanoparticles showed a good permanence and high isolation recoveries for the pull down of the target bacterium from food samples, after recycling eight times. The method was successfully applied to target bacterium determinations in milk and milk product samples.


Assuntos
Brucella melitensis/isolamento & purificação , Laticínios/microbiologia , Leite/microbiologia , Técnicas de Microbalança de Cristal de Quartzo , Animais , Nanopartículas de Magnetita/química , Tamanho da Partícula , Propriedades de Superfície
13.
Talanta ; 191: 59-66, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30262099

RESUMO

An aptasensor was designed for sensitive detection of thrombin using in biological fluids by integrating a magnetic aptamer-microbeads. To achieve this goal, the surface of gold plated QCM crystals was coated with L-cysteine and a thrombin binding DNA aptamer was immobilized on the L-cysteine coated QCM crystals surface via glutaraldehyde coupling. The binding interactions of thrombin to QCM crystals were characterized. Magnetic poly(2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate-vinylene carbonate), Mp(HEMA-EGDMA-VC) microbeads were synthesized and thrombin binding aptamer (TBA) was immobilized. The Mp(HEMA-EGDMA-VC)-TBA microbeads were effectively adsorbed thrombin from serum in a relatively short contact time (ca. 5.0 min), and the eluted protein from Mp(HEMA-EGDMA-VC)-TBA was transferred to the QCM aptasensor that showed a specific detection of thrombin from serum. The detection limit of thrombin using aptasensor was 1.00 nmol L-1. The calculation dissociation constant of the aptasensor was 68.5 nmol L-1. The selectivity of the aptasensor system was tested with three different proteins (i.e., elastin, immunoglobulin G (IgG) and human serum albumin (HSA)) and showed high specificity to thrombin. The aptasensor was regenerated by washing with NaOH solution, and repeatedly used until 20 cycles without a change in the performance.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Limite de Detecção , Imãs/química , Trombina/análise , Trombina/isolamento & purificação , Adsorção , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Humanos , Microesferas , Trombina/metabolismo
14.
Ecotoxicol Environ Saf ; 170: 453-460, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553923

RESUMO

The presented paper describes a detailed study on the use of immobilized laccase for effective degradation of Cibacron Blue 3GA dye. The amount of laccase loading on the cyclic carbonate groups containing poly(hydroxyethyl methacrylate-co-vinylene carbonate), p(HEMA-co-VC), microbeads was 27.8 mg g-1, and the retained immobilized enzyme activity was 73% compared to free enzyme. The toxicity of the dye and its byproducts were studied using Daphnia magna as test organism. The micro-algal growth inhibition was also studied using a green micro algae "Chlorella vulgaris". MALDI-ToF-MS was used to verify dye degradation byproducts. After 60 min of incubation period, Cibacron Blue 3GA (CB3GA) and its byproducts disappeared from the medium. After 60-min enzymatic treatment, the non-toxic nature of medium was confirmed by toxicity studies. On the other hand, the initial byproducts of the dye seemed to be more toxic than the later formed dye products. It should be noted that the information obtained from this study can be beneficial for understanding the initial degradation byproducts toxicities of the enzymatically treated dyes to provide information about environmental protection.


Assuntos
Corantes/química , Enzimas Imobilizadas/metabolismo , Lacase/metabolismo , Animais , Biodegradação Ambiental , Chlorella vulgaris/efeitos dos fármacos , Corantes/toxicidade , Daphnia/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Metacrilatos , Microesferas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Testes de Toxicidade
15.
ACS Biomater Sci Eng ; 4(4): 1437-1444, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33418673

RESUMO

General detection methods for S. enterica include PCR analysis, immunologic methods, solid culturing techniques, and various microscopic studies. Milk and other food samples demonstrate an especially difficult challenge for direct detection, resulting from high biological contents. In this report, we aimed for fast detection of pathogen cells through an efficient magnetic capture and subsequent quick detection based on aptamer affinity. The Fe3O4@SiO2@pGMA and MCM-41 particles were prepared separately and used for preconcentration and detection, respectively. Aptamer oligonucleotide sequences against S. enterica were fixed on both amine-functionalized MCM-41 and Fe3O4@SiO2@pGMA particles via glutaraldehyde coupling. The captured Salmonella cells were determined by a fluorescent homogeneous assay in the samples by aptamer-gated MCM-41 silica particles. Our method achieved a sensitive assay to detect Salmonella cells in milk samples as low as 103 CFU/ml without any culturing. Hence, the proposed sensing strategy might be an efficient platform for pathogen detection in a food matrix.

17.
Food Chem ; 221: 1442-1450, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979113

RESUMO

In this study, magnetic nanoparticles (Fe3O4) were modified sequentially with silica (Fe3O4@SiO2), glycidyl methacrylate (GMA) by surface initiated atom transfer radical polymerization (SI-ATRP) and hexamethylene diamine (as a spacer arm). The p(GMA) grafted and SA modified form (i.e., Fe3O4@SiO2@pGMA-SA-3) was used for covalent immobilization of invertase (EC 3.2.1.26). The amount of immobilized enzyme on Fe3O4@SiO2@p(GMA) and Fe3O4@SiO2@p(GMA)-SA-3 was 36.1±0.9 and 33.4±1.3mg/g, respectively. The Km and Vmax values of immobilized invertase were found to be 39.4mmol/L and 349.5mmol/L min, and not significantly changed compared with free form (34.3mmol/L and 387.2mmol/Lmin), respectively, revealed that the applied protocol did not have any detrimental effect on the retained activity of immobilized invertase.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , beta-Frutofuranosidase/química , Magnetismo , Nanopartículas , Polímeros
18.
Water Sci Technol ; 74(4): 914-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27533866

RESUMO

Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively.


Assuntos
Aminopiridinas/farmacologia , Biomassa , Cromo/metabolismo , Spirulina/efeitos dos fármacos , Água/química , Adsorção , Cromo/química , Concentração de Íons de Hidrogênio , Íons , Concentração Osmolar , Spirulina/química , Temperatura , Purificação da Água
19.
Biosens Bioelectron ; 86: 27-32, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318566

RESUMO

A fast, specific and sensitive homogeneous assay for Staphylococcus aureus detection was developed by measuring the activity of secreted nuclease from the bacteria via a modified DNA oligonucleotide. As biosensor format, an effective system, Nanokeepers as previously reported, were used for triggered release of confined fluorophores, and hence specific detection of S. aureus on nuclease activity was obtained. The interference from blood components for fluorescent quantification was eliminated by a pre-purification by aptamer-functionalized silica magnetic nanoparticles. The reported assay system was exclusively formed by nucleic acid oligos and magnetic or mesoporous silica nanoparticles, that can be used on blood samples in a stepwise manner. The assay was successfully used as a sensing platform for the specific detection of S. aureus cells as low as 682 CFU in whole blood.


Assuntos
Bacteriemia/sangue , Bacteriemia/diagnóstico , Técnicas de Tipagem Bacteriana/instrumentação , Sondas de DNA/genética , DNA Bacteriano/sangue , Staphylococcus aureus/isolamento & purificação , Análise Química do Sangue/instrumentação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Nanopartículas de Magnetita/química , Nanoconjugados/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Dióxido de Silício/química , Staphylococcus aureus/genética
20.
Chemosphere ; 150: 275-284, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26907596

RESUMO

The aim of this study is to prepare bisphenol A (BPA) imprinted polymers, which can be used for the selective removal of BPA from aqueous medium. The BPA-imprinted (MIP) and non-imprinted (NIP) microbeads were synthesized, and characterized by Zeta-sizer, FTIR, SEM and BET method. Bisphenol A was determined in solutions using liquid chromatography-mass spectroscopy (LC-MS). The effect of initial concentration of BPA, the adsorption rate and the pH of the medium on the capacity of BPA-imprinting polymer were studied. Adsorption capacity of BPA was affected by the amount of the incorporated functional monomer in the polymer network. BPA adsorption capacity of MIP-3 and NIP microbeads from aqueous medium was estimated as 76.7 and 59.9 mg g(-1), respectively. The binding efficiencies of BPA-MIP-3 microbeads for different phenolic compounds (i.e., BPA with p-toluidine, 4-aminophenol or 2-naphthol) were explored at binary solutions, and the binding capacities of BPA-imprinted microbeads were found to be 2.79 × 10(-1), 2.39 × 10(-1), 7.59 × 10(-2) and 5.48 × 10(-2) mmol g(-1) microbeads, respectively. The satisfactory results demonstrated that the obtained BPA-MIP microbeads showed an appreciable binding specificity toward BPA than similar structural compounds in the aqueous medium. Moreover, the reusability of BPA-MIP-3 microbeads was tested for several times and no significant loss in adsorption capacity was observed. Finally, the binary and multi-component systems results show that MIP-3 microbeads have special recognition selectivity and excellent binding affinity for template molecule "BPA".


Assuntos
Compostos Benzidrílicos/análise , Impressão Molecular , Fenóis/análise , Polímeros/química , Poluentes Químicos da Água/análise , Água/química , Adsorção , Microesferas , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...