Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17158-17169, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874447

RESUMO

Understanding Li-ion transport is key for the rational design of superionic solid electrolytes with exceptional ionic conductivities. LiNbOCl4 is reported to be one of the most highly conducting materials in the recently realized new class of soft oxyhalide solid electrolytes, exhibiting an ionic conductivity of ∼11 mS·cm-1. Here, we apply X-ray/neutron diffraction and pair distribution function analysis─coupled with density functional theory/ab initio molecular dynamics (AIMD)─to determine a structural model that provides a rationale for the high conductivity that we observe experimentally in this nanocrystalline solid. We show that it arises from unusually high framework flexibility at room temperature. This is due to isolated 1-D [NbOCl4]- anionic chains that exhibit energetically favorable orientational disorder that is─in turn─correlated to multiple, disordered, and equi-energetic Li+ sites in the lattice. As the Li ions sample the 3-D energy landscape with a fast predicted diffusion coefficient of 5.1 × 10-7 cm2/s at room temperature (σicalc = 17.4 mS·cm-1), the inorganic polymer chains can reorient or vice versa. The activation energy barrier for Li migration through the frustrated energy landscape is especially reduced by the elastic nature of the NbO2Cl4 octahedra evident from very widely dispersed Cl-Nb-Cl bond angles in AIMD simulations at 300 K. The phonon spectra are predominantly influenced by Cl vibrations in the low energy range, and there is a strong overlap between the framework (Cl, Nb) and Li partial density of states in the region between 1.2 and 4.0 THz. The framework flexibility is also reflected in a relatively low bulk modulus of 22.7 GPa. Our findings pave the way for the investigation of future "flex-ion" inorganic solids and open up a new direction for the design of high-conductivity, soft solid electrolytes for all-solid-state batteries.

2.
J Phys Chem Lett ; 15(19): 5076-5087, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38708887

RESUMO

The dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO2), and lithium nitrate (LiNO3), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO2 exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO2 and LiNO3 solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.

3.
J Am Chem Soc ; 146(19): 12984-12999, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709897

RESUMO

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 µs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.

4.
ChemSusChem ; 16(13): e202300157, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222654

RESUMO

Efficient direct air capture (DAC) of CO2 will require strategies to deal with the relatively low concentration in the atmosphere. One such strategy is to employ the combination of a CO2 -selective membrane coupled with a CO2 capture solvent acting as a draw solution. Here, the interactions between a leading water-lean carbon-capture solvent, a polyether ether ketone (PEEK)-ionene membrane, CO2 , and combinations were probed using advanced NMR techniques coupled with advanced simulations. We identify the speciation and dynamics of the solvent, membrane, and CO2 , presenting spectroscopic evidence of CO2 diffusion through benzylic regions within the PEEK-ionene membrane, not spaces in the ionic lattice as expected. Our results demonstrate that water-lean capture solvents provide a thermodynamic and kinetic funnel to draw CO2 from the air through the membrane and into the bulk solvent, thus enhancing the performance of the membrane. The reaction between the carbon-capture solvent and CO2 produces carbamic acid, disrupting interactions between the imidazolium (Im+ ) cations and the bistriflimide anions within the PEEK-ionene membrane, thereby creating structural changes through which CO2 can diffuse more readily. Consequently, this restructuring results in CO2 diffusion at the interface that is faster than CO2 diffusion in the bulk carbon-capture solvent.


Assuntos
Dióxido de Carbono , Água , Solventes/química , Água/química , Dióxido de Carbono/química , Polietilenoglicóis
5.
Angew Chem Int Ed Engl ; 62(30): e202300404, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37195229

RESUMO

We report a new sodium fast-ion conductor, Na3 B5 S9 , that exhibits a high Na ion total conductivity of 0.80 mS cm-1 (sintered pellet; cold-pressed pellet=0.21 mS cm-1 ). The structure consists of corner-sharing B10 S20 supertetrahedral clusters, which create a framework that supports 3D Na ion diffusion channels. The Na ions are well-distributed in the channels and form a disordered sublattice spanning five Na crystallographic sites. The combination of structural elucidation via single crystal X-ray diffraction and powder synchrotron X-ray diffraction at variable temperatures, solid-state nuclear magnetic resonance spectra and ab initio molecular dynamics simulations reveal high Na-ion mobility (predicted conductivity: 0.96 mS cm-1 ) and the nature of the 3D diffusion pathways. Notably, the Na ion sublattice orders at low temperatures, resulting in isolated Na polyhedra and thus much lower ionic conductivity. This highlights the importance of a disordered Na ion sublattice-and existence of well-connected Na ion migration pathways formed via face-sharing polyhedra-in dictating Na ion diffusion.

6.
ACS Appl Mater Interfaces ; 14(51): 56767-56779, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516985

RESUMO

The search for new solid electrolyte materials and an understanding of fast-ion conductivity are crucial for the development of safe and high-power all-solid-state battery technology. Herein, we present the synthesis, structure, and properties of a crystalline lithium-ion conductor, Li3.3Al0.15P0.85S4 (i.e., Li9.9Al0.45P2.55S12), found in the compositional range Li3+2xP1-xAlxS4 (x = 0.15, 0.20, and 0.33). 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) aided in identifying the successful introduction of Al into the lattice. At high values of x (>0.15), crystalline Li5AlS4 and a glassy amorphous component exsolve to yield a multiphase mixture. The crystal structure of Li3.3Al0.15P0.85S4 was elucidated by single-crystal X-ray diffraction and powder neutron diffraction, demonstrating that it belongs to the thio-LISICON family with the Pnma space group, a = 12.9572(13) Å, b = 8.0861(8) Å, c = 6.1466(6) Å, and V = 644.00(11) Å3. The Li+-ion conductivity and diffusivity in this bulk material (which contains about 10 wt % of an amorphous phase, as prepared) were studied by electrochemical impedance spectroscopy and 7Li pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The total ionic conductivity of Li3.3Al0.15P0.85S4 is 0.22(2) mS·cm-1 at room temperature with an activation energy of 0.30(1) eV. A two-component analysis method based on the Kärger equations was developed to analyze the diffusive exchange between the bulk and amorphous phases of Li3.3Al0.15P0.85S4 detected via the PFG-NMR signal attenuation curves. This approach was employed to quantitatively compare different sample morphologies (glass powder, crystalline powder, and crystalline pellets of Li3.3Al0.15P0.85S4) and assess the influence of the macroscopic state on microscopic ion transport, as supported by NMR relaxation measurements.

7.
ACS Appl Mater Interfaces ; 14(47): 52886-52893, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395424

RESUMO

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.

8.
J Phys Chem Lett ; 13(18): 4000-4006, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35482607

RESUMO

The Overhauser effect is unique among DNP mechanisms in that it requires the modulation of the electron-nuclear hyperfine interactions. While it dominates DNP in liquids and metals, where unpaired electrons are highly mobile, Overhauser DNP is possible in insulating solids if rapid structural modulations are linked to a modulation in hyperfine coupling. Herein, we report that Overhauser DNP can be triggered by the strategic addition of a methyl group, demonstrated here in a Blatter's radical. The rotation of the methyl group leads to a modulation of the hyperfine coupling to its protons, which in turn facilitates electron-nuclear cross-relaxation. Removal of the methyl protons, through deuteration, quenches the process, as does the reduction of the hyperfine coupling strength. This result suggests the possibility for the design of tailor-made Overhauser DNP polarizing agents for high-field MAS-DNP.

9.
J Phys Chem B ; 125(19): 5089-5099, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33970627

RESUMO

Sulfuric acid is a ubiquitous compound for industrial processes, and aqueous sulfate solutions also play a critical role as electrolytes for many prominent battery chemistries. While the thermodynamic literature on it is quite well-developed, comprehensive studies of the solvation structure, particularly molecular-scale dynamical and transport properties, are less available. This study applies a multinuclear nuclear magnetic resonance (NMR) approach to the elucidation of the solvation structure and dynamics over wide temperature (-10 to 50 °C) and concentration (0-18 M) ranges, combining the 17O shift, line width, and T1 relaxation measurements, 33S shift and line width measurements, and 1H pulsed-field gradient NMR measurements of proton self-diffusivity. In conjunction, these results indicate a crossover between two regimes of solvation structure and dynamics, occurring above the concentration associated with the deep eutectic point (∼4.5 M), with the high-concentration regime dominated by a strong water-sulfate correlation. This description was borne out in detail by the activation energy trends with increasing concentration derived from the relaxation of both the H2O/H3O+ and H2SO4/HSO4-/SO42- 17O resonances and the 1H self-diffusivity. However, the 17O chemical shift difference between the H2O/H3O+ and H2SO4/HSO4-/SO42- resonances across the entire temperature range is nevertheless strikingly linear. A computational approach coupling molecular dynamics simulations and density functional theory NMR shift calculations to reproduce this trend is presented, which will be the subject of further development. This combination of multinuclear, dynamical NMR, and computational methods, and the results furnished by this study, will provide a platform for future studies on battery electrolytes where aqueous sulfate chemistry plays a central role in the solution structure.

10.
Angew Chem Int Ed Engl ; 58(26): 8681-8686, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31041839

RESUMO

Developing high-performance all-solid-state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide-rich solid solution phases in the argyrodite Li6 PS5 Cl family, Li6-x PS5-x Cl1+x , and combine electrochemical impedance spectroscopy, neutron diffraction, and 7 Li NMR MAS and PFG spectroscopy to show that increasing the Cl- /S2- ratio has a systematic, and remarkable impact on Li-ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5 PS4.5 Cl1.5 , exhibits a cold-pressed conductivity of 9.4±0.1 mS cm-1 at 298 K (and 12.0±0.2 mS cm-1 on sintering)-almost four-fold greater than Li6 PS5 Cl under identical processing conditions and comparable to metastable superionic Li7 P3 S11 . Weakened interactions between the mobile Li-ions and surrounding framework anions incurred by substitution of divalent S2- for monovalent Cl- play a major role in enhancing Li+ -ion diffusivity, along with increased site disorder and a higher lithium vacancy population.

11.
J Am Chem Soc ; 138(25): 7992-9, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250238

RESUMO

Accurate modeling of Li-ion batteries performance, particularly during the transient conditions experienced in automotive applications, requires knowledge of electrolyte transport properties (ionic conductivity κ, salt diffusivity D, and lithium ion transference number t(+)) over a wide range of salt concentrations and temperatures. While specific conductivity data can be easily obtained with modern computerized instrumentation, this is not the case for D and t(+). A combination of NMR and MRI techniques was used to solve the problem. The main advantage of such an approach over classical electrochemical methods is its ability to provide spatially resolved details regarding the chemical and dynamic features of charged species in solution, hence the ability to present a more accurate characterization of processes in an electrolyte under operational conditions. We demonstrate herein data on ion transport properties (D and t(+)) of concentrated LiPF6 solutions in a binary ethylene carbonate (EC)-dimethyl carbonate (DMC) 1:1 v/v solvent mixture, obtained by the proposed technique. The buildup of steady-state (time-invariant) ion concentration profiles during galvanostatic experiments with graphite-lithium metal cells containing the electrolyte was monitored by pure phase-encoding single point imaging MRI. We then derived the salt diffusivity and Li(+) transference number over the salt concentration range 0.78-1.27 M from a pseudo-3D combined PFG-NMR and MRI technique. The results obtained with our novel methodology agree with those obtained by electrochemical methods, but in contrast to them, the concentration dependences of salt diffusivity and Li(+) transference number were obtained simultaneously within the single in situ experiment.

12.
Phys Rev Lett ; 109(26): 267004, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368606

RESUMO

We resolve an existing discrepancy between convincing evidence for competing order in underdoped cuprates and spectroscopic data consistent with a homogeneous d-wave superconductor in the very same compounds. Specifically, we show that fluctuations of the competing order generate strongly inhomogeneous states whose spectra are almost indistinguishable from the pure d-wave superconductor. This is in contrast to the commonly studied case of homogeneously coexisting order, which typically generates a reconstructed Fermi surface with closed Fermi pockets. The signatures of the fluctuating competing order can be found mainly in a splitting of the antinodal band, and, for strong magnetic order, in small induced nodal gaps similar to those found in recent experiments on underdoped La(2-x)Sr(x)CuO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...