Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838617

RESUMO

A new multicationic structurally disordered K5FeHf(MoO4)6 crystal belonging to the molybdate family is synthesized by the two-stage solid state reaction method. The characterization of the electronic and vibrational properties of the K5FeHf(MoO4)6 was performed using density functional theory calculations, group theory, Raman and infrared spectroscopy. The vibrational spectra are dominated by vibrations of the MoO4 tetrahedra, while the lattice modes are observed in a low-wavenumber part of the spectra. The experimental gap in the phonon spectra between 450 and 700 cm-1 is in a good agreement with the simulated phonon density of the states. K5FeHf(MoO4)6 is a paramagnetic down to 4.2 K. The negative Curie-Weiss temperature of -6.7 K indicates dominant antiferromagnetic interactions in the compound. The direct and indirect optical bandgaps of K5FeHf(MoO4)6 are 2.97 and 3.21 eV, respectively. The K5FeHf(MoO4)6 bandgap narrowing, with respect to the variety of known molybdates and the ab initio calculations, is explained by the presence of Mott-Hubbard optical excitation in the system of Fe3+ ions.


Assuntos
Eletricidade , Análise Espectral Raman , Espectrofotometria Infravermelho , Temperatura
2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 839-849, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017317

RESUMO

Single crystals of Tl4.86Fe0.82Hf1.18(MoO4)6 [a = b = 10.5550 (3), c = 37.7824 (9) Å, γ = 120°] are obtained by the self-flux method in the Tl2MoO4-Fe2(MoO4)3-Hf(MoO4)2 system. On the differential scanning calorimetry curve in the temperature range 320-350 K and at T ∼ 690 K, endothermic peaks are observed. The second harmonic generation test shows an excess of the signal of the quartz standard by almost three times at room temperature. In the range 320-340 K its intensity decreases by almost three times and at T ∼ 700 K it drops to zero. In the same interval, the temperature dependences of the unit-cell parameters and volume show stepwise changes. According to the X-ray diffraction data, the crystal structure consists of nonpolar and polar domains with different local symmetries. The structure is a three-dimensional framework consisting of alternating (Hf,Fe)O6 octahedra connected by MoO4 tetrahedra. Hf and Fe atoms occupy mixed Hf/Fe positions with different probabilities: 0.77:0.23, 0.50:0.50 and 0.32:0.68. Tl cations are located inside the framework in zigzag channels extended along the a and b axes. The thallium arrangement is disordered, i.e. it involves additional positions and vacancies. The complex crystal structure has been solved using the nonstandard space group R1, taking into account the local symmetry R3c for the Mo atoms and mixed Hf/Fe positions mainly occupied by Hf atoms. The possible paths of ion transport are analyzed. The energy required to overcome the potential barrier between sites of Tl cations to migrate, which corresponds to the activation energy of conductivity, is estimated. The ion current is shown to be most probable in the ab plane.

3.
Inorg Chem ; 59(17): 12681-12689, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32805991

RESUMO

The phase relations in the subsolidus region of the Tl2MoO4-Bi2(MoO4)3-Hf(MoO4)2 system were studied with the "intersecting cuts" method. The formation of the novel ternary molybdate Tl5BiHf(MoO4)6 is found in this ternary system. The compound has a phase transition at Tpt = 731 K (ΔH = -3.15 J/g) and melts at Tm = 871 K (ΔH = -41.71 J/g), as determined by a thermal analysis. Tl5BiHf(MoO4)6 single crystals were obtained by the spontaneous nucleation method. The crystal structure of Tl5BiHf(MoO4)6 was revealed by structure analysis methods. This molybdate crystallizes in the trigonal space group R3̅c with the unit cell parameters a = 10.6801(4) Å, c = 38.5518(14) Å, V = 3808.3(2) Å3, and Z = 6. The vibrational characteristics of Tl5BiHf(MoO4)6 were determined by Raman spectroscopy. The Tl5BiHf(MoO4)6 conductivity was measured at frequencies of 0.1, 1.0, and 10 kHz in the temperature range of 293-773 K; in this temperature range, the conductivity level was 10-12-10-7 S/cm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...