Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neonatal Screen ; 9(3)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37754774

RESUMO

Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid ß-oxidation with no apparent genotype-phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have been reported, highlighting a necessity for more sensitive and specific biomarkers. This study included 54 patients with LCHAD/MTP deficiency that has been confirmed by biochemical and molecular methods. The analysis of acylcarnitines in dried blood spots was performed using ESI-MS/MS. The established "HADHA ratio" = (C16OH + C18OH + C18:1OH)/C0 was significantly elevated in all 54 affected individuals in comparison to the control group. Apart from 54 LCHAD deficiency patients, the "HADHA ratio" was calculated in 19 patients with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. As VLCAD-deficient patients did not show increased "HADHA ratio", the results emphasized the high specificity of this new ratio. Therefore, the "HADHA ratio" was shown to be instrumental in improving the overall performance of MS/MS-based analysis of acylcarnitine levels in the diagnostics of LCHAD/MTP deficiencies. The ratio was demonstrated to increase the sensitivity and specificity of this method and reduce the chances of false-negative results.

2.
Elife ; 72018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204083

RESUMO

Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.


Assuntos
Neurônios Colinérgicos/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Optogenética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Interneurônios/fisiologia , Músculos/inervação , Músculos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...