Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834001

RESUMO

A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.

2.
Dalton Trans ; 49(43): 15287-15298, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112327

RESUMO

A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.

3.
Inorg Chem ; 59(1): 563-578, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858796

RESUMO

The syntheses, structure and magnetic properties are reported for five novel 1D polymeric azido-bridged lanthanide complexes with the general formula {[Ln(DAPMBH)(N3)C2H5OH]C2H5OH}n where H2DAPMBH = 2,6-diacetylpyridine bis(4-methoxybenzoylhydrazone)-a new pentadentate pyridine-base [N3O2] ligand and Ln = Dy (1), Y0.930Dy0.070 (2), Er (3), Y0.923Er0.077 (4), and Gd (5). X-ray diffraction analysis of 1-5 show that the central lanthanide atoms are eight-coordinated with the N5O3 donor set originating from the ligand DAPMBH, one coordinated ethanol molecule and two end-to-end type N3- bridges connecting the metal centers into infinite chain. The [LnN5O3] coordination polyhedron can be regarded as a distorted dodecahedron (D2d). AC magnetic measurements revealed that compounds 1-4 show field-induced single-molecule magnet behavior, with estimated energy barriers Ueff ≈ 47-17 K. The experimental study of magnetic properties was complemented by theoretical analysis based on crystal-field calculations. Direct current magnetic susceptibility studies revealed marginally weak intrachain exchange interaction between Ln3+ ions mediated by the end-to-end azide bridging groups (J ≈ -0.015 cm-1 for 5). Comparative analysis of static and dynamic magnetic properties of magnetically concentrated (1, 3) and diluted (2, 4) Dy and Er compounds showed that, despite fascinating 1D azido-bridged chain structure, compounds 1 and 3 are not single-chain magnets; their magnetic behavior is largely due to single-ion magnetic anisotropy of individual Ln3+ ions.

4.
Dalton Trans ; 45(41): 16309-16316, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27722482

RESUMO

A series of novel cluster compounds comprising molybdenum in a low valence state was synthesized by means of a disproportionation of the dimeric compound [Mo+42Cl4(OCH3)4(CH3OH)2] (1). The reaction of 1 with CH3OH leads to the disproportionation of Mo+4 yielding an unusual mixed-valence cluster [Mo+3.54Cl4O2(OCH3)6(CH3OH)4] (2). By exploring this synthetic approach further, tri-{[Mo3Cl3(OCH3)7(CH3OH)3] (3)}, tetra-{[Mo4Cl4(OCH3)10(CH3OH)2] (4), [Mo4Cl3O(OCH3)9(CH3OH)3] (5), [Mo4Cl2(OCH3)12(CH3OH)2] (6)}, and hexanuclear {[Mo6Cl4O6(OCH3)10(CH3OH)2] (7)} molybdenum alkoxides were synthesized by the reaction of 1 with methanol and stoichiometric amounts of magnesium methoxide, thus providing a general facile access to the polynuclear methoxide complexes of a low-valence molybdenum. Due to the feasibility to adopt multiple oxidation states in a reversible manner and the documented competence of molybdenum alkoxide compounds to catalyze the reduction of inert molecules, including N2, the synthesized compounds were expected to function as catalysts of small molecule substrates reduction/hydrogenation. Accordingly, the reduction of acetylene (C2H2) to an ethylene (C2H4) and ethane (C2H6) mixture, in methanol (with water additives) serving as a reaction medium and a proton donor, and using sodium or europium amalgams as reducing agents, was performed in the presence of 2. Preliminary kinetic studies evidently point to a catalytic function of molybdenum species derived from 2, thus establishing the observed reactivity as a rare example of non-precious metal-catalyzed acetylene hydrogenation, providing, in addition, a convenient model for further mechanistic studies.

5.
Dalton Trans ; 43(34): 12876-85, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25019529

RESUMO

The reaction of MoCl5 methanolysis in the presence of magnesium ions was shown to produce an extensive row of heterobimetallic Mg-Mo(V, VI) oxomethoxides of different nuclearity ranging from 4 for [Mg2(CH3OH)4Mo2O2(OCH3)10] (1) to 26 for [Mg(DMF)3(CH3OH)3]2[Mo22Mg4O48(OCH3)28(DMF)6] (2) with the latter possessing a ring morphology. Examination of [Mo6O12(OCH3)16Mg4(CH3OH)6] (3), [Mo6O12(OCH3)12Mg2(DMF)4] (4a), and [Mo6O16(OCH3)4Mg2(DMF)8] (5a) X-ray structures revealed the presence of the well known tetranuclear core {Mo4O8(OCH3)2}(2+) thus similar reactivity patterns leading to their formation were assumed. For convenient synthesis of such heterobimetallic oxoalkoxides, the retrosynthetic approach based on speculative deconstruction of a target molecule onto simpler fragments was suggested and successfully employed. Namely, the reaction of the stoichiometric amounts of appropriately chosen Mo(V), Mo(VI) and Mg(2+) synthons led to their assembling resulting in the formation of heterometallic clusters 3, 5a and [Mo6O12(OCH3)12Mg2(CH3OH)4]·2CH3OH (4b) characterized by means of elemental analysis, UV-Vis, IR spectroscopy, and X-ray crystallography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...