Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 27(5): 511-513, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32242119

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Struct Mol Biol ; 27(1): 33-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873304

RESUMO

ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH-ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liase/química , ATP Citrato (pro-S)-Liase/ultraestrutura , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
3.
J Biol Chem ; 294(18): 7259-7268, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877197

RESUMO

ATP-citrate lyase (ACLY) is a major source of nucleocytosolic acetyl-CoA, a fundamental building block of carbon metabolism in eukaryotes. ACLY is aberrantly regulated in many cancers, cardiovascular disease, and metabolic disorders. However, the molecular mechanisms determining ACLY activity and function are unclear. To this end, we investigated the role of the uncharacterized ACLY C-terminal citrate synthase homology domain in the mechanism of acetyl-CoA formation. Using recombinant, purified ACLY and a suite of biochemical and biophysical approaches, including analytical ultracentrifugation, dynamic light scattering, and thermal stability assays, we demonstrated that the C terminus maintains ACLY tetramerization, a conserved and essential quaternary structure in vitro and likely also in vivo Furthermore, we show that the C terminus, only in the context of the full-length enzyme, is necessary for full ACLY binding to CoA. Together, we demonstrate that ACLY forms a homotetramer through the C terminus to facilitate CoA binding and acetyl-CoA production. Our findings highlight a novel and unique role of the C-terminal citrate synthase homology domain in ACLY function and catalysis, adding to the understanding of the molecular basis for acetyl-CoA synthesis by ACLY. This newly discovered means of ACLY regulation has implications for the development of novel ACLY modulators to target acetyl-CoA-dependent cellular processes for potential therapeutic use.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Coenzima A/metabolismo , Multimerização Proteica , ATP Citrato (pro-S)-Liase/química , Catálise , Estabilidade Enzimática , Especificidade por Substrato , Temperatura
4.
Nat Commun ; 8(1): 1141, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29070843

RESUMO

Over the last decade, numerous histone acyl post-translational modifications (acyl-PTMs) have been discovered, of which the functional significance is still under intense study. Here, we use high-resolution mass spectrometry to accurately quantify eight acyl-PTMs in vivo and after in vitro enzymatic assays. We assess the ability of seven histone acetyltransferases (HATs) to catalyze acylations on histones in vitro using short-chain acyl-CoA donors, proving that they are less efficient towards larger acyl-CoAs. We also observe that acyl-CoAs can acylate histones through non-enzymatic mechanisms. Using integrated metabolomic and proteomic approaches, we achieve high correlation (R 2 > 0.99) between the abundance of acyl-CoAs and their corresponding acyl-PTMs. Moreover, we observe a dose-dependent increase in histone acyl-PTM abundances in response to acyl-CoA supplementation in in nucleo reactions. This study represents a comprehensive profiling of scarcely investigated low-abundance histone marks, revealing that concentrations of acyl-CoAs affect histone acyl-PTM abundances by both enzymatic and non-enzymatic mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...