Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32265045

RESUMO

Professor Barbara Tudek received the Frits Sobels Award in 2019 from the European Environmental Mutagenesis and Genomics Society (EEMGS). This article presents her outstanding character and most important lines of research. The focus of her studies covered alkylative and oxidative damage to DNA bases, in particular mutagenic and carcinogenic properties of purines with an open imidazole ring and 8-oxo-7,8-dihydroguanine (8-oxoGua). They also included analysis of mutagenic properties and pathways for the repair of DNA adducts of lipid peroxidation (LPO) products arising in large quantities during inflammation. Professor Tudek did all of this in the hope of deciphering the mechanisms of DNA damage removal, in particular by the base excision repair (BER) pathway. Some lines of research aimed at discovering factors that can modulate the activity of DNA damage repair in hope to enhance existing anti-cancer therapies. The group's ongoing research aims at deciphering the resistance mechanisms of cancer cell lines acquired following prolonged exposure to photodynamic therapy (PDT) and the possibility of re-sensitizing cells to PDT in order to increase the application of this minimally invasive therapeutic method.


Assuntos
Carcinogênese/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Neoplasias/história , Fotoquimioterapia/história , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Guanina/metabolismo , História do Século XX , História do Século XXI , Humanos , Peroxidação de Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fotoquimioterapia/métodos
2.
DNA Repair (Amst) ; 82: 102698, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31518879

RESUMO

Aerobic respiration generates reactive oxygen species (ROS), which can damage nucleic acids, proteins and lipids. A number of transcription factors (TFs) contain redox-sensitive cysteine residues at their DNA-binding sites, hence ROS-induced thiol oxidation strongly inhibits their recognition of the cognate DNA sequences. Major human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/APEX1/HAP-1), referred also as a redox factor 1 (Ref-1), stimulates the DNA binding activities of the oxidized TFs such as AP-1 and NF-κB. Also, APE1 participates in the base excision repair (BER) and nucleotide incision repair (NIR) pathways to remove oxidative DNA base damage. At present, the molecular mechanism underlying the TF-stimulating/redox function of APE1 and its biological role remains disputed. Here, we provide evidence that, instead of direct cysteine reduction in TFs by APE1, APE1-catalyzed NIR and TF-stimulating activities may be based on transient cooperative binding of APE1 to DNA and induction of conformational changes in the helix. The structure of DNA duplex strongly influences NIR and TF-stimulating activities. Homologous plant AP endonucleases lacking conserved cysteine residues stimulate DNA binding of the p50 subunit of NF-κB. APE1 acts synergistically with low-molecular-weight reducing agents on TFs. Finally, APE1 stimulates DNA binding of the redox-insensitive p50-C62S mutant protein. Electron microscopy imaging of APE1 complexes with DNA revealed preferential polymerization of APE1 on the gapped and intrinsically curved DNA duplexes. Molecular modeling offers a structural explanation how full-length APE1 can oligomerize on DNA. In conclusion, we propose that DNA-directed APE1 oligomerization can be regarded as a substitute for diffusion of APE1 along the DNA contour to probe for anisotropic flexibility. APE1 oligomers exacerbate pre-existing distortions in DNA and enable both NIR activity and DNA binding by TFs regardless of their oxidation state.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Biocatálise , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
3.
DNA Repair (Amst) ; 64: 10-25, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475157

RESUMO

The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3'-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1-DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme-substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate. SIGNIFICANCE STATEMENT: The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Domínios e Motivos de Interação entre Proteínas , DNA/química , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Humanos , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...