Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241341

RESUMO

The decrease of superplastic forming temperature and improvement of post-forming mechanical properties are important issues for titanium-based alloys. Ultrafine-grained and homogeneous microstructure are required to improve both processing and mechanical properties. This study focuses on the influence of 0.01-2 wt.% B (boron) on the microstructure and properties of Ti-4Al-3Mo-1V (wt.%) alloys. The microstructure evolution, superplasticity, and room temperature mechanical properties of boron-free and boron-modified alloys were investigated using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, X-ray diffraction analysis, and uniaxial tensile tests. A trace addition of 0.01 to 0.1 wt.% B significantly refined prior ß-grains and improved superplasticity. Alloys with minor B and B-free alloy exhibited similar superplastic elongations of 400-1000% in a temperature range of 700-875 °C and strain rate sensitivity coefficient m of 0.4-0.5. Along with this, a trace boron addition provided a stable flow and effectively reduced flow stress values, especially at low temperatures, that was explained by the acceleration of the recrystallization and globularization of the microstructure at the initial stage of superplastic deformation. Recrystallization-induced decrease in yield strength from 770 MPa to 680 MPa was observed with an increase in boron content from 0 to 0.1%. Post-forming heat treatment, including quenching and ageing, increased strength characteristics of the alloys with 0.01 and 0.1% boron by 90-140 MPa and insignificantly decreased ductility. Alloys with 1-2% B exhibited an opposite behavior. For the high-boron alloys, the refinement effect of the prior ß-grains was not detected. A high fraction of borides of ~5-11% deteriorated the superplastic properties and drastically decreased ductility at room temperature. The alloy with 2% B demonstrated non-superplastic behavior and low level of strength properties; meanwhile, the alloy with 1% B exhibited superplasticity at 875 °C with elongation of ~500%, post-forming yield strength of 830 MPa, and ultimate tensile strength of 1020 MPa at room temperature. The differences between minor boron and high boron influence on the grain structure and properties were discussed and the mechanisms of the boron influence were suggested.

2.
Materials (Basel) ; 15(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234190

RESUMO

Magnesium alloys are attractive candidates for use as temporary fixation devices in osteosynthesis because they have a density and Young's modulus similar to those of cortical bone. One of the main requirements for biodegradable implants is its substitution by tissues during the healing process. In this article, the Mg-Zn-Ga-(Y) alloys were investigated that potentially can increase the bone growth rate by release of Ga ions during the degradation process. Previously, the effectiveness of Ga ions on bone tissue regeneration has been proved by clinical tests. This work is the first systematic study on the microstructure and mechanical properties of Mg-Zn-Y alloys containing Ga as an additional major alloying element prepared by the hot-extrusion process. The microstructure and phase composition of the Mg-Zn-Ga-(Y) alloys in as-cast, heat-treated, and extruded conditions were analyzed. In addition, it was shown that the use of hot extrusion produces Mg-Zn-Ga-(Y) alloys with favorable mechanical properties. The tensile yield strength, ultimate tensile strength, and elongation at fracture of the MgZn4Ga4 alloy extruded at 150 °C were 256 MPa, 343 MPa, and 14.2%, respectively. Overall, MgZn4Ga4 alloy is a perspective for applications in implants for osteosynthesis with improved bone regeneration ability.

3.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080622

RESUMO

Composites based on Zr65Cu17.5Ni10Al7.5/PTFE (polytetrafluoroethylene) with silane were prepared by ball milling with subsequent thermal pressing. Silanization was performed in the alcoholic solution with metallic glass powder. Different composites, 30/70 and 50/50 with silane, were prepared. During ball milling, Zr2Cu and Zr2Ni intermetallic phases were formed. The Zr-based metallic glass had a large supercooled region, and the melting point of the 30/70 and 50/50 composites with silane was near to the melting point of PTFE. The 50/50 composite (silane) had the highest thermal conductivity compared to the 30/70 composite samples. The incorporation of silane in metallic glass/polymer was investigated by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analysis. Thermogravimetric analysis (TGA) showed the thermal stability of the composite samples up to 450-460 °C. It was also concluded that the 50/50 composite with silane has better thermal stability than the 30/70 composite with silane. The addition of silane in 30/70 and 50/50 composites increased the thermal conductivity compared to the composites without silane.

4.
Materials (Basel) ; 14(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34947441

RESUMO

Mg alloys have mechanical properties similar to those of human bones, and have been studied extensively because of their potential use in biodegradable medical implants. In this study, the influence of different heat treatment regimens on the microstructure and mechanical and corrosion properties of biodegradable Mg-Zn-Ga alloys was investigated, because Ga is effective in the treatment of disorders associated with accelerated bone loss. Solid-solution heat treatment (SSHT) enhanced the mechanical properties of these alloys, and a low corrosion rate in Hanks' solution was achieved because of the decrease in the cathodic-phase content after SSHT. Thus, the Mg-4 wt.% Zn-4 wt.% Ga-0.5 wt.% Y alloy after 18 h of SSHT at 350 °C (ultimate tensile strength: 207 MPa; yield strength: 97 MPa; elongation at fracture: 7.5%; corrosion rate: 0.27 mm/year) was recommended for low-loaded orthopedic implants.

5.
Sci Rep ; 5: 7799, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25589472

RESUMO

Zr-Pd metallic glassy thin films with a hierarchical nano-scale structure, produced by magnetron sputtering of the Zr and Pd powder mixture, demonstrate a unique combination of physical and biochemical properties. Thermal stability of the nano-structured glassy samples, their resistance to oxidation in dry air and phase transformation behavior are discussed in the present work. These binary alloy samples also show exceptionally high corrosion resistance and spontaneous passivation in a simulated body fluid. Experiments on the catalytic activity and biocompatibility of this nanostructured metallic glass indicate that this is a very suitable material for biochemical applications. Compared to the multicomponent alloys studied earlier this binary alloy has much simpler chemical composition, which makes preparation of the sample with defined stoichiometry easier, especially when the elements have different sputtering rates.


Assuntos
Bioquímica/métodos , Vidro/química , Nanoestruturas/química , Paládio/química , Zircônio/química , Fosfatase Alcalina/metabolismo , Animais , Catálise , Eletrólise , Humanos , Nanoestruturas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/enzimologia , Espectroscopia Fotoeletrônica , Soluções , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...