Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203778

RESUMO

Sepsis is a life-threatening condition caused by the dysregulated host response to infection. Novel therapeutic options are urgently needed and aquaporin inhibitors could suffice as aquaporin 5 (Aqp5) knockdown provided enhanced sepsis survival in a murine sepsis model. Potential AQP5 inhibitors provide sulfonamides and their derivatives. In this study, we tested the hypothesis that sulfonamides reduce AQP5 expression in different conditions. The impact of sulfonamides on AQP5 expression and immune cell migration was examined in cell lines REH and RAW 264.7 by qPCR, Western blot and migration assay. Subsequently, whether furosemide and methazolamide are capable of reducing AQP5 expression after LPS incubation was investigated in whole blood samples of healthy volunteers. Incubation with methazolamide (10-5 M) and furosemide (10-6 M) reduced AQP5 mRNA and protein expression by about 30% in REH cells. Pre-incubation of the cells with methazolamide reduced cell migration towards SDF1-α compared to non-preincubated cells to control level. Pre-incubation with methazolamide in PBMCs led to a reduction in LPS-induced AQP5 expression compared to control levels, while furosemide failed to reduce it. Methazolamide appears to reduce AQP5 expression and migration of immune cells. However, after LPS administration, the reduction in AQP5 expression by methazolamide is no longer possible. Hence, our study indicates that methazolamide is capable of reducing AQP5 expression and has the potential to be used in sepsis prophylaxis.


Assuntos
Metazolamida , Sepse , Humanos , Animais , Camundongos , Furosemida , Lipopolissacarídeos , Sulfonamidas , Movimento Celular , Sulfanilamida , Sepse/tratamento farmacológico , RNA Mensageiro/genética , Aquaporina 5/genética
2.
PLoS One ; 17(7): e0271119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802656

RESUMO

Midazolam is a widely used short-acting benzodiazepine. However, midazolam is also criticized for its deliriogenic potential. Since delirium is associated with a malfunction of the neurotransmitter acetylcholine, midazolam appears to interfere with its proper metabolism, which can be triggered by epigenetic modifications. Consequently, we tested the hypothesis that midazolam indeed changes the expression and activity of cholinergic genes by acetylcholinesterase assay and qPCR. Furthermore, we investigated the occurrence of changes in the epigenetic landscape by methylation specific PCR, ChiP-Assay and histone ELISA. In an in-vitro model containing SH-SY5Y neuroblastoma cells, U343 glioblastoma cells, and human peripheral blood mononuclear cells, we found that midazolam altered the activity of acetylcholinesterase /buturylcholinesterase (AChE / BChE). Interestingly, the increased expression of the buturylcholinesterase evoked by midazolam was accompanied by a reduced methylation of the BCHE gene and the di-methylation of histone 3 lysine 4 and came along with an increased expression of the lysine specific demethylase KDM1A. Last, inflammatory cytokines were not induced by midazolam. In conclusion, we found a promising mechanistic link between midazolam treatment and delirium, due to a significant disruption in cholinesterase homeostasis. In addition, midazolam seems to provoke profound changes in the epigenetic landscape. Therefore, our results can contribute to a better understanding of the hitherto poorly understood interactions and risk factors of midazolam on delirium.


Assuntos
Delírio , Neuroblastoma , Acetilcolinesterase/metabolismo , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Delírio/etiologia , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Lisina/metabolismo , Midazolam/farmacologia , Neuroblastoma/genética
3.
Front Immunol ; 13: 978862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36846019

RESUMO

Introduction: Colorectal cancer (CRC) is the third leading cause of cancer-related deaths globally. Tumour-infiltrating leukocytes play an important role in cancers, including CRC. We therefore sought to characterize the impact of tumour-infiltrating leukocytes on CRC prognosis. Methods: To determine whether the immune cell profile within CRC tissue could influence prognosis, we employed three computational methodologies (CIBERSORT, xCell and MCPcounter) to predict abundance of immune cell types, based on gene expression. This was done using two patient cohorts, TCGA and BC Cancer Personalized OncoGenomics (POG). Results: We observed significant differences in immune cell composition between CRC and normal adjacent colon tissue, as well as differences in based on method of analysis. Evaluation of survival based on immune cell types revealed dendritic cells as a positive prognostic marker, consistently across methodologies. Mast cells were also found to be a positive prognostic marker, but in a stage-dependent manner. Unsupervised cluster analysis demonstrated that significant differences in immune cell composition has a more pronounced effect on prognosis in early-stage CRC, compared to late-stage CRC. This analysis revealed a distinct group of individuals with early-stage CRC which have an immune infiltration signature that indicates better survival probability. Conclusions: Taken together, characterization of the immune landscape in CRC has provided a powerful tool to assess prognosis. We anticipate that further characterization of the immune landscape will facilitate use of immunotherapies in CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Leucócitos , Prognóstico , Macrófagos
4.
Front Oncol ; 11: 655479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277407

RESUMO

Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in cellular processes including cell proliferation, transcription regulation and cell cycle regulation. CDK10 has been identified as both a candidate tumor suppressor in hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it may represent a viable biomarker and target for chemoresistance. The development of therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a novel CDK10 kinase activity assay has been developed, which will aid in the development of small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor for CDK10 would facilitate further exploration of its biological functions and affirm its candidacy as a therapeutic target, specifically for CRC.

5.
PLoS One ; 14(5): e0217269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141559

RESUMO

BACKGROUND: Propofol is a widely used anaesthetic drug with advantageous operating conditions and recovery profile. However, propofol could have long term effects on neuronal cells and is associated with post-operative delirium (POD). In this context, one of the contributing factors to the pathogenesis of POD is a reduction of cholinesterase activity. Accordingly, we investigated the effects of propofol on the methylation, expression and activity of cholinergic genes and proteins in an in-vitro model. RESULTS: We found that propofol indeed reduced the activity of AChE / BChE in our in-vitro model, without affecting the protein levels. Furthermore, we could show that propofol reduced the methylation of a repressor region of the CHRNA7 gene without changing the secretion of pro-or anti-inflammatory cytokines. Lastly, propofol changed the expression patterns of genes responsible for maintaining the epigenetic status of the cell and accordingly reduced the tri-methylation of H3 K27. CONCLUSION: In conclusion we found a possible functional link between propofol treatment and POD, due to a reduced cholinergic activity. In addition to this, propofol changed the expression of different maintenance genes of the epigenome that also affected histone methylation. Thus, propofol treatment may also induce strong, long lasting changes in the brain by potentially altering the epigenetic landscape.


Assuntos
Complicações Pós-Operatórias/etiologia , Propofol/efeitos adversos , Linhagem Celular Tumoral , Colinérgicos , Neurônios Colinérgicos/efeitos dos fármacos , Colinesterases/genética , Delírio/etiologia , Epigênese Genética/efeitos dos fármacos , Humanos , Éteres Metílicos , Metilação , Período Pós-Operatório
6.
Atherosclerosis ; 275: 11-21, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29852400

RESUMO

BACKGROUND AND AIMS: Lipoprotein(a) (Lp(a)) is a causal risk factor for cardiovascular disorders including coronary heart disease and calcific aortic valve stenosis. Apolipoprotein(a) (apo(a)), the unique glycoprotein component of Lp(a), contains sequences homologous to plasminogen. Plasminogen activation is markedly accelerated in the presence of cell surface receptors and can be inhibited in this context by apo(a). METHODS: We evaluated the role of potential receptors in regulating plasminogen activation and the ability of apo(a) to mediate inhibition of plasminogen activation on vascular and monocytic/macrophage cells through knockdown (siRNA or blocking antibodies) or overexpression of various candidate receptors. Binding assays were conducted to determine apo(a) and plasminogen receptor interactions. RESULTS: The urokinase-type plasminogen activator receptor (uPAR) modulates plasminogen activation as well as plasminogen and apo(a) binding on human umbilical vein endothelial cells (HUVECs), human acute monocytic leukemia (THP-1) cells, and THP-1 macrophages as determined through uPAR knockdown and overexpression. Apo(a) variants lacking either the kringle V or the strong lysine binding site in kringle IV type 10 are not able to bind to uPAR to the same extent as wild-type apo(a). Plasminogen activation is also modulated, albeit to a lower extent, through the Mac-1 (αMß2) integrin on HUVECs and THP-1 monocytes. Integrin αVß3 can regulate plasminogen activation on THP-1 monocytes and to a lesser extent on HUVECs. CONCLUSIONS: These results indicate cell type-specific roles for uPAR, αMß2, and αVß3 in promoting plasminogen activation and mediate the inhibitory effects of apo(a) in this process.


Assuntos
Apoproteína(a)/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Integrina alfaVbeta3/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/enzimologia , Monócitos/enzimologia , Plasminogênio/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativação Enzimática , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Transdução de Sinais , Células THP-1
7.
Curr Probl Cancer ; 42(2): 215-230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29459177

RESUMO

Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+/CD16+) isolated from inflammatory breast cancer (IBC) patients' secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients' clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC.


Assuntos
Carboxipeptidase B2/genética , Neoplasias Inflamatórias Mamárias/sangue , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Interleucina-10/sangue , Macrófagos/patologia , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Inflamatórias Mamárias/imunologia , Interleucina-10/genética , Interleucina-10/farmacologia , Metástase Linfática , Macrófagos/fisiologia , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Vasculares/secundário
8.
Clin Exp Metastasis ; 34(2): 155-169, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28124276

RESUMO

Thrombin-activatable fibrinolysis inhibitor (TAFI) is a basic carboxypeptidase zymogen present in blood plasma. Proteolytic activation of TAFI by thrombin, thrombin in complex with the endothelial cell cofactor thrombomodulin, or plasmin results in an enzyme (TAFIa) that removes carboxyl-terminal lysine residues from protein and peptide substrates, including cell-surface plasminogen receptors. TAFIa is therefore capable of inhibiting plasminogen activation in the pericellular milieu. Since plasminogen activation has been linked to angiogenesis, TAFIa could therefore have anti-angiogenic properties, and indeed TAFIa has been shown to inhibit endothelial tube formation in a fibrin matrix. In this study, the TAFI pathway was manipulated by providing exogenous TAFI or TAFIa or by adding a potent and specific inhibitor of TAFIa. We found that TAFIa elicited a series of anti-angiogenic responses by endothelial cells, including decreased endothelial cell proliferation, cell invasion, cell migration, tube formation, and collagen degradation. Moreover, TAFIa decreased tube formation and proteolysis in endothelial cell culture grown alone and in co-culture with breast cancer cell lines. In accordance with these findings, inhibition of TAFIa increased secretion of matrix metalloprotease proenzymes by endothelial and breast cancer cells. Finally, treatment of endothelial cells with TAFIa significantly inhibited plasminogen activation. Taken together our results suggest a novel role for TAFI in inhibiting tumour angiogenic behaviors in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carboxipeptidase B2/fisiologia , Células Endoteliais/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Carboxipeptidase B2/antagonistas & inibidores , Carboxipeptidase B2/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Colágeno Tipo IV/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Precursores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasminogênio/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
9.
J Transl Med ; 14(1): 321, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871297

RESUMO

BACKGROUND: The C-allele of the aquaporin (AQP5) -1364A/C polymorphism is associated with decreased AQP5 expression but increased 30-day survival in patients with severe sepsis. AQP5 expression might affect survival via an impact on cell migration. Consequently, we tested the hypothesis that (1) Aqp5 knockout (KO) compared to wild type (WT) mice show an increased survival following lipopolysaccharide (LPS) administration, and that (2) AQP5 expression and the AQP5 -1364A/C polymorphism alters immune cell migration. METHODS: We investigated Aqp5-KO and wild type mice after intraperitoneal injection of either E.coli lipopolysaccharide (LPS, serotype O127:B8, 20 mg/kg) or saline. Furthermore, neutrophils of volunteers with the AA-AQP5 or AC/CC-AQP5- genotype were incubated with 10-8 M Chemotactic peptide (fMLP) and their migration was assessed by a filter migration assay. Additionally, AQP5 expression after fMLP incubation was analyzed by RT-PCR and Western blot. Moreover, migration of AQP5 overexpressing Jurkat cells was studied after SDF-1α-stimulation. We used exact Wilcoxon-Mann-Whitney tests; exact Wilcoxon signed-rank tests and the Kaplan-Meier estimator for statistical analysis. RESULTS: Fifty-six percent of Aqp5-KO but only 22% of WT mice survived following LPS-injection. WT mice showed increased neutrophil migration into peritoneum and lung compared to Aqp5-KO mice. Target-oriented migration of neutrophils was seen after 0.5 h in AA-genotype cells but only after 1.5 h in AC/CC-genotype cells, with a threefold lower migrating cell count. AQP5 overexpressing Jurkat cells showed a 2.4 times stronger migration compared to native Jurkat cells. CONCLUSION: The AQP5 genotype may influence survival following LPS by altering neutrophil cell migration. Trial registration DRKS00010437. Retrospectively registered 26 April 2016.


Assuntos
Aquaporina 5/genética , Movimento Celular , Regulação da Expressão Gênica , Neutrófilos/patologia , Polimorfismo de Nucleotídeo Único/genética , Sepse/genética , Sepse/patologia , Animais , Western Blotting , Citocinas/sangue , Genótipo , Células HL-60 , Humanos , Injeções Intraperitoneais , Células Jurkat , Lipopolissacarídeos , Camundongos Knockout , Neutrófilos/metabolismo , Estudos Prospectivos , Sepse/sangue , Análise de Sobrevida
10.
PLoS One ; 11(6): e0156702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27249028

RESUMO

Sepsis, with a persistently high 90-day mortality of about 46%, is the third most frequent cause of death in intensive care units worldwide. Further understanding of the inflammatory signaling pathways occurring in sepsis is important for new efficient treatment options. Key regulator of the inflammatory response is the transcription factor NFκB. As we have recently shown, the -94 Ins/Del NFKB1 promoter polymorphism influences sepsis mortality. However, a molecular explanation is still missing. Thus, promoter activity might be varying depending on the NFKB1 genotype, explaining the genotype dependent mortality from sepsis, and one likely mechanism is the degree of promoter methylation. Therefore, we tested the hypothesis that NFκB mRNA expression is regulated by promoter methylation in human cell lines and primary immune cell cultures. First, we examined the methylation of the NFKB1 promoter in U937, REH and HL-60 cells. In the promoter region of nt+99/+229 methylation in all analyzed cell lines was below 1%. Following incubation with bacterial cell wall components, no significant changes in the frequency of promoter methylation in U937 and REH cells were measured and the methylation frequency was under 1%. However, NFκB1 mRNA expression was two-fold increased in U937 cells after 24 h incubation with LPS. By contrast, demethylation by 5-Aza-2'-deoxycytidine incubation enhanced NFκB1 expression significantly. In addition, we analyzed NFKB1 promoter methylation in primary cells from healthy volunteers depending on the NFKB1-94 Ins/Del genotype. Methylation in the promoter region from nt+402 to nt+99 was below 1%. Genotype dependent differences occurred in neutrophil cells, where DD-genotype was significantly more methylated compared to II genotype at nt+284/+402. Besides in the promoter region from nt-227/-8 in ID-genotypes methylation of neutrophils was significantly decreased compared to lymphocytes and in II-genotypes methylation in neutrophils was significantly decreased compared to lymphocytes and monocytes. In addition, CHART-PCR showed that the hypomethylated promoter regions are highly accessible. Therefore we assume that the demethylated regions are very important for NFKB1 promoter activity.


Assuntos
Metilação de DNA , DNA/genética , NF-kappa B/genética , Regiões Promotoras Genéticas , Linhagem Celular , Humanos
11.
BMC Cancer ; 16: 328, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27221823

RESUMO

BACKGROUND: Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. METHODS: To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. RESULTS: Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. CONCLUSIONS: Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Carboxipeptidase B2/farmacologia , Movimento Celular , Plasminogênio/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Proteólise , Trombomodulina/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...