Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 14(7): 441, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460459

RESUMO

BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Ovarianas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Feminino , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína bcl-X/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Melanoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral
3.
Biomedicines ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36289899

RESUMO

Among soluble actors that have emerged as druggable factors, the chemokine interleukin-8 (IL-8) has emerged as a possible determinant of response to immunotherapy and targeted treatment in several cancer types; however, its prognostic/predictive role in colorectal cancer (CRC) remains to be established. We: (i) conducted a systematic review of published literature on IL-8 expression in CRC; (ii) searched public transcriptomics databases; (iii) investigated IL-8 expression, by tumor and infiltrating cells, in a series of CRC samples; and (iv) carried out a meta-analysis of published literature correlating IL-8 expression and CRC prognosis. IL-8 possesses an important role as a mediator of the bidirectional crosstalk between tumor/stromal cells. Transcriptomic analysis indicated that specific IL-8 transcripts were significantly overexpressed in CRC compared to normal colon mucosa. Moreover, in our series we observed a statistically significant correlation between PTEN-loss and IL-8 expression by infiltrating mononuclear and tumor cells. In total, 12 papers met our meta-analysis inclusion criteria, demonstrating that high IL-8 levels significantly correlated with shorter overall survival and progression-free survival. Sensitivity analysis demonstrated a highly significant correlation with outcome for circulating, but not for tissue-detected, IL-8. IL-8 is overexpressed in CRC tissues and differentially produced by tumor or stromal components depending on CRC genetic background. Moreover, circulating IL-8 represents a strong prognostic factor in CRC, suggesting its use in the refining of prognostic CRC assessment and potentially the tailoring of therapeutic strategies in individual CRC patients.

4.
Front Oncol ; 12: 862806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719951

RESUMO

Purpose: Tumor-microenvironment interactions are important determinants of drug resistance in colorectal cancer (CRC). We, therefore, set out to understand how interactions between genetically characterized CRC cells and stromal fibroblasts might influence response to molecularly targeted inhibitors. Techniques: Sensitivity to PI3K/AKT/mTOR pathway inhibitors of CRC cell lines, with known genetic background, was investigated under different culture conditions [serum-free medium, fibroblasts' conditioned medium (CM), direct co-culture]. Molecular pathway activation was monitored using Western Blot analysis. Immunoprecipitation was used to detect specific mTOR complex activation. Immunofluorescence was used to analyze cellular PTEN distribution, while different mutant PTEN plasmids were used to map the observed function to specific PTEN protein domains. Results: Exposure to fibroblast-CM resulted in increased growth-inhibitory response to double PI3K/mTOR inhibitors in PTEN-competent CRC cell lines harboring KRAS and PI3K mutations. Such functional effect was attributable to fibroblast-CM induced paradoxical PI3K/mTORC1 pathway activation, occurring in the presence of a functional PTEN protein. At a molecular level, fibroblast-CM induced C-tail phosphorylation and cytoplasmic redistribution of the PTEN protein, thereby impairing its lipid phosphatase function and favored the formation of active, RAPTOR-containing, mTORC1 complexes. However, PTEN's lipid phosphatase function appeared to be dispensable, while complex protein-protein interactions, also involving PTEN/mTOR co-localization and subcellular distribution, were crucial for both mTORC1 activation and sensitivity to double PI3K/mTOR inhibitors. Data Interpretation: Microenvironmental cues, in particular soluble factors produced by stromal fibroblasts, profoundly influence PI3K pathway signaling and functional response to specific inhibitors in CRC cells, depending on their mutational background and PTEN status.

5.
J Exp Clin Cancer Res ; 41(1): 148, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440004

RESUMO

BACKGROUND: Despite the promise of dual BRAF/MEK inhibition as a therapy for BRAF-mutant (BRAF-mut) melanoma, heterogeneous responses have been observed in patients, thus predictors of benefit from therapy are needed. We have previously identified semaphorin 6A (SEMA6A) as a BRAF-mut-associated protein involved in actin cytoskeleton remodeling. The purpose of the present study is to dissect the role of SEMA6A in the biology of BRAF-mut melanoma, and to explore its predictive potential towards dual BRAF/MEK inhibition. METHODS: SEMA6A expression was assessed by immunohistochemistry in melanoma cohort RECI1 (N = 112) and its prognostic potential was investigated in BRAF-mut melanoma patients from DFCI and TCGA datasets (N = 258). The molecular mechanisms regulated by SEMA6A to sustain tumor aggressiveness and targeted therapy resistance were investigated in vitro by using BRAF-mut and BRAF-wt melanoma cell lines, an inducible SEMA6A silencing cell model and a microenvironment-mimicking fibroblasts-coculturing model. Finally, SEMA6A prediction of benefit from dual BRAF/MEK inhibition was investigated in melanoma cohort RECI2 (N = 14). RESULTS: Our results indicate higher protein expression of SEMA6A in BRAF-mut compared with BRAF-wt melanoma patients and show that SEMA6A is a prognostic indicator in BRAF-mut melanoma from TCGA and DFCI patients cohorts. In BRAF-mut melanoma cells, SEMA6A coordinates actin cytoskeleton remodeling by the RhoA-dependent activation of YAP and dual BRAF/MEK inhibition by dabrafenib+trametinib induces SEMA6A/RhoA/YAP axis. In microenvironment-mimicking co-culture condition, fibroblasts confer to melanoma cells a proliferative stimulus and protect them from targeted therapies, whereas SEMA6A depletion rescues the efficacy of dual BRAF/MEK inhibition. Finally, in BRAF-mut melanoma patients treated with dabrafenib+trametinib, high SEMA6A predicts shorter recurrence-free interval. CONCLUSIONS: Overall, our results indicate that SEMA6A contributes to microenvironment-coordinated evasion of melanoma cells from dual BRAF/MEK inhibition and it might be a good candidate predictor of short-term benefit from dual BRAF/MEK inhibition.


Assuntos
Melanoma , Semaforinas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Microambiente Tumoral , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917181

RESUMO

The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.


Assuntos
Melanoma/diagnóstico , Melanoma/terapia , Medicina de Precisão , Biomarcadores , Biópsia , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Genômica/métodos , Humanos , Imunoterapia , Biópsia Líquida , Melanoma/etiologia , Metabolômica/métodos , Avaliação de Resultados da Assistência ao Paciente , Medicina de Precisão/métodos , Proteômica/métodos
7.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266496

RESUMO

To date, pancreatic cancer is still one of the most lethal cancers in the world, mainly due to the lack of early diagnosis and personalized treatment strategies. In this context, the possibility and the opportunity of identifying genetic and molecular biomarkers are crucial to improve the feasibility of precision medicine. In 2019, the World Health Organization classified pancreatic ductal adenocarcinoma cancer (the most common pancreatic tumor type) into eight variants, according to specific histomorphological features. They are: colloid carcinoma, medullary carcinoma, adenosquamous carcinoma, undifferentiated carcinoma, including also rhabdoid carcinoma, undifferentiated carcinoma with osteoclast-like giant cells, hepatoid carcinoma, and signet-ring/poorly cohesive cells carcinoma. Interestingly, despite the very low incidence of these variants, innovative high throughput genomic/transcriptomic techniques allowed the investigation of both somatic and germline mutations in each specific variant, paving the way for their possible classification according also to specific alterations, along with the canonical mutations of pancreatic cancer (KRAS, TP53, CDKN2A, SMAD4). In this review, we aim to report the current evidence about genetic/molecular profiles of pancreatic cancer variants, highlighting their role in therapeutic and clinical impact.


Assuntos
Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/patologia , Mutação , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/patologia , Medicina de Precisão , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Genômica , Mutação em Linhagem Germinativa , Humanos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia
8.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182542

RESUMO

Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.


Assuntos
Neoplasias da Mama/fisiopatologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Terapia de Alvo Molecular/métodos , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Receptor Tirosina Quinase Axl
9.
Commun Biol ; 3(1): 546, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004975

RESUMO

Inflammation might substantially contribute to the limited therapeutic success of current systemic therapies in colorectal cancer (CRC). Amongst cytokines involved in CRC biology, the proinflammatory chemokine IL-8 has recently emerged as a potential prognostic/predictive biomarker. Here, we show that BRAF mutations and PTEN-loss are associated with high IL-8 levels in CRC models in vitro and that BRAF/MEK/ERK, but not PI3K/mTOR, targeting controls its production in different genetic contexts. In particular, we identified a BRAF/ERK2/CHOP axis affecting IL-8 transcription, through regulation of CHOP subcellular localization, and response to targeted inhibitors. Moreover, RNA Pol II and an open chromatin status in the CHOP-binding region of the IL-8 gene promoter cooperate towards increased IL-8 expression, after a selective BRAF inhibition. Overall, our data show that IL-8 production is finely and differentially regulated depending on the tumor genetic context and might be targeted for therapeutic purposes in molecularly defined subgroups of CRC patients.


Assuntos
Neoplasias Colorretais/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição CHOP/metabolismo , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas B-raf/fisiologia , RNA Polimerase II/metabolismo , Transdução de Sinais
10.
Cancers (Basel) ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036192

RESUMO

Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase (MEK), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.

11.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727102

RESUMO

Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , PTEN Fosfo-Hidrolase/imunologia , Microambiente Tumoral/imunologia , Humanos , Neoplasias/patologia
12.
Cells ; 9(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012917

RESUMO

The threatening notoriety of pancreatic cancer mainly arises from its negligible early diagnosis, highly aggressive progression, failure of conventional therapeutic options and consequent very poor prognosis. The most important driver genes of pancreatic cancer are the oncogene KRAS and the tumor suppressors TP53, CDKN2A, and SMAD4. Although the presence of few drivers, several signaling pathways are involved in the oncogenesis of this cancer type, some of them with promising targets for precision oncology. Pancreatic cancer is recognized as one of immunosuppressive phenotype cancer: it is characterized by a fibrotic-desmoplastic stroma, in which there is an intensive cross-talk between several cellular (e.g., fibroblasts, myeloid cells, lymphocytes, endothelial, and myeloid cells) and acellular (collagen, fibronectin, and soluble factors) components. In this review; we aim to describe the current knowledge of the genetic/biological landscape of pancreatic cancer and the composition of its tumor microenvironment; in order to better direct in the intrinsic labyrinth of this complex tumor type. Indeed; disentangling the genetic and molecular characteristics of cancer cells and the environment in which they evolve may represent the crucial step towards more effective therapeutic strategies.


Assuntos
Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Ensaios Clínicos como Assunto , Humanos , Neoplasias Pancreáticas/terapia , Transdução de Sinais
13.
Adv Exp Med Biol ; 1223: 69-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32030685

RESUMO

The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/imunologia , Microambiente Tumoral/efeitos dos fármacos
14.
J Oncol ; 2019: 5373580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191652

RESUMO

Cytokines are a family of soluble factors (Growth Factors (GFs), chemokines, angiogenic factors, and interferons), which regulate a wide range of mechanisms in both physiological and pathological conditions, such as tumor cell growth and progression, angiogenesis, and metastasis. In recent years, the growing interest in developing new cancer targeted therapies has been accompanied by the effort to characterize Tumor Microenvironment (TME) and Tumor-Stroma Interactions (TSI). The connection between tumor and stroma is now well established and, in the last decade, evidence from genetic, pharmacological, and epidemiological data supported the importance of microenvironment in tumor progression. However, several of the mechanisms behind TSI and their implication in tumor progression remain still unclear and it is crucial to establish their potential in determining pharmacological response. Many studies have demonstrated that cytokines network can profoundly affect TME, thus displaying potential therapeutic efficacy in both preclinical and clinical models. The goal of this review is to give an overview of the most relevant cytokines involved in colorectal and pancreatic cancer progression and their implication in drug response.

15.
Cancers (Basel) ; 11(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064074

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10-15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.

16.
Cancers (Basel) ; 11(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925702

RESUMO

Identifying putative biomarkers of clinical outcomes in cancer is crucial for successful enrichment, and for the selection of patients who are the most likely to benefit from a specific therapeutic approach. Indeed, current research in personalized cancer therapy focuses on the possibility of identifying biomarkers that predict prognosis, sensitivity or resistance to therapies. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates several crucial cell functions such as proliferation, survival, genomic stability and cell motility through both enzymatic and non-enzymatic activities and phosphatidylinositol 3-kinase (PI3K)-dependent and -independent mechanisms. Despite its undisputed role as a tumor suppressor, assessment of PTEN status in sporadic human tumors has yet to provide clinically robust prognostic, predictive or therapeutic information. This is possibly due to the exceptionally complex regulation of PTEN function, which involves genetic, transcriptional, post-transcriptional and post-translational events. This review shows a brief summary of the regulation and function of PTEN and discusses its controversial aspects as a prognostic/predictive biomarker.

17.
Cancer Drug Resist ; 2(4): 968-979, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-35582268

RESUMO

Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.

18.
Int J Mol Sci ; 19(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126252

RESUMO

The mammalian target of rapamycin (mTOR) pathway regulates major processes by integrating a variety of exogenous cues, including diverse environmental inputs in the tumor microenvironment (TME). In recent years, it has been well recognized that cancer cells co-exist and co-evolve with their TME, which is often involved in drug resistance. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both the tumor immunity and angiogenesis. The activation of mTOR signaling is associated with these pro-oncogenic cellular processes, making mTOR a promising target for new combination therapies. This review highlights the role of mTOR signaling in the characterization and the activity of the TME's elements and their implications in cancer immunotherapy.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral , Animais , Humanos , Imunomodulação , Imunoterapia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Serina-Treonina Quinases TOR/imunologia
19.
J Exp Clin Cancer Res ; 37(1): 140, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986755

RESUMO

BACKGROUND: Mounting evidence suggests that RAF-mediated MEK activation plays a crucial role in paradox MAPK (re)activation, leading to resistance and therapeutic failure with agents hitting a single step along the MAPK cascade. METHODS: We examined the molecular and functional effects of single and combined BRAF (dabrafenib), pan-RAF (RAF265), MEK (trametinib) and EGFR/HER2 (lapatinib) inhibition, using Western Blot and conservative isobologram analysis to assess functional synergism, and explored genetic determinants of synergistic interactions. Immunoprecipitation based assays were used to detect the interaction between BRAF and CRAF. The Mann-Whitney U test was used for comparing quantitative variables. RESULTS: Here we demonstrated that a combination of MEK and BRAF inhibitors overcomes paradoxical MAPK activation (induced by BRAF inhibitors) in BRAF-wt/RAS-mut NSCLC and PDAC in vitro. This results in growth inhibitory synergism, both in vitro and in vivo, in the majority (65%) of the cellular models analyzed, encompassing cell lines and patient-derived cancer stem cells and organoids. However, RAS mutational status is not the sole determinant of functional synergism between RAF and MEK inhibitors, as demonstrated in KRAS isogenic tumor cell line models. Moreover, in EGFR-driven contexts, paradoxical MAPK (re)activation in response to selective BRAF inhibition was dependent on EGFR family signaling and could be offset by simultaneous EGFR/HER-2 blockade. CONCLUSIONS: Overall, our data indicate that RAF inhibition-induced paradoxical MAPK activation could be exploited for therapeutic purposes by simultaneously targeting both RAF and MEK (and potentially EGFR family members) in appropriate molecular contexts. KRAS mutation per se does not effectively predict therapeutic synergism and other biomarkers need to be developed to identify patients potentially deriving benefit from combined BRAF/MEK targeting.


Assuntos
Antineoplásicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oximas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancers (Basel) ; 10(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351204

RESUMO

The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...