Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(7): e17293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419064

RESUMO

The harbour seal Phoca vitulina is a ubiquitous pinniped species found throughout coastal waters of the Northern Hemisphere. Harbour seal impacts on ecosystem dynamics may be significant due to their high abundance and food web position. Two subspecies exist in North America, P. v. richardii in the Pacific Ocean and P. v. vitulina in the Atlantic. Strong natal philopatry of harbour seals can result in fine-scale genetic structure and isolation by distance. Management of harbour seals is expected to benefit from improved resolution of seal population structure and dynamics. Here, we use genotyping-by-sequencing to genotype 146 harbour seals from the eastern Pacific Ocean (i.e. British Columbia (BC), Oregon and California) and the western Atlantic Ocean (i.e. Québec, Newfoundland and Labrador). Using 12,742 identified variants, we confirm the recently identified elevated genetic diversity in the eastern Pacific relative to the western Atlantic and greatest differentiation between the subspecies. Further, we demonstrate that this is independent of reference genome bias or other potential technical artefacts. Coast-specific analyses with 8933 and 3828 variants in Pacific and Atlantic subspecies, respectively, identify divergence between BC and Oregon-California, and between Québec and Newfoundland-Labrador. Unexpected PCA outlier clusters were observed in two populations due to cryptic relatedness of individuals; subsequently, closely related samples were removed. Admixture analysis indicates an isolation-by-distance signature where Oregon seals contained some of the BC signature, whereas California did not. Additional sampling is needed in the central and north coast of BC to determine whether a discrete separation of populations exists within the region.


Assuntos
Phoca , Humanos , Animais , Phoca/genética , Colúmbia Britânica , Ecossistema , Metagenômica , California
2.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293843

RESUMO

Chum salmon are ecologically important to Pacific Ocean ecosystems and commercially important to fisheries. To improve the genetic resources available for this species, we sequenced and assembled the genome of a male chum salmon using Oxford Nanopore read technology and the Flye genome assembly software (contig N50: ∼2 Mbp, complete BUSCOs: ∼98.1%). We also resequenced the genomes of 59 chum salmon from hatchery sources to better characterize the genome assembly and the diversity of nucleotide variants impacting phenotype variation. With genomic sequences from a doubled haploid individual, we were able to identify regions of the genome assembly that have been collapsed due to high sequence similarity between homeologous (duplicated) chromosomes. The homeologous chromosomes are relics of an ancient salmonid-specific genome duplication. These regions were enriched with genes whose functions are related to the immune system and responses to toxins. From analyzing nucleotide variant annotations of the resequenced genomes, we were also able to identify genes that have increased levels of variants thought to moderately impact gene function. Genes related to the immune system and the detection of chemical stimuli (olfaction) had increased levels of these variants based on a gene ontology enrichment analysis. The tandem organization of many of the enriched genes raises the question of why they have this organization.


Assuntos
Duplicação Gênica , Genoma , Oncorhynchus keta , Oncorhynchus keta/genética , Animais , Estudo de Associação Genômica Ampla , Masculino , Feminino , Nucleotídeos/genética , Fenótipo , Filogenia , Cromossomos , Processos de Determinação Sexual
3.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36759939

RESUMO

Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly. We also resequenced the genomes of 83 coho salmon across the North American range to identify nucleotide variants and understand the demographic histories of these salmon by modeling effective population size from genome-wide data. From demographic history modeling, we observed reductions in effective population sizes between 3,750 and 8,000 years ago for several northern sampling sites, which may correspond to bottleneck events during recolonization after glacial retreat.


Assuntos
Oncorhynchus kisutch , Animais , Oncorhynchus kisutch/genética , Densidade Demográfica , Genoma
4.
Mol Ecol ; 32(3): 542-559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000273

RESUMO

Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.


Assuntos
Oncorhynchus kisutch , Humanos , Animais , Oncorhynchus kisutch/genética , Genética Populacional , Adaptação Fisiológica/genética , Deriva Genética , Genoma , Polimorfismo de Nucleotídeo Único/genética
5.
Mol Ecol Resour ; 22(5): 1824-1835, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212146

RESUMO

Genetic stock identification (GSI) from genotyping-by-sequencing of single nucleotide polymorphism (SNP) loci has become the gold standard for stock of origin identification in Pacific salmon. The sequencing platforms currently applied require large batch sizes and multiday processing in specialized facilities to perform genotyping by the thousands. However, recent advances in third-generation single-molecule sequencing platforms, such as the Oxford Nanopore minION, provide base calling on portable, pocket-sized sequencers and promise real-time, in-field stock identification of variable batch sizes. Here we evaluate utility and comparability to established GSI platforms of at-sea stock identification of coho salmon (Oncorhynchus kisutch) using targeted SNP amplicon sequencing on the minION platform during a high-sea winter expedition to the Gulf of Alaska. As long read sequencers are not optimized for short amplicons, we concatenate amplicons to increase coverage and throughput. Nanopore sequencing at-sea yielded data sufficient for stock assignment for 50 out of 80 individuals. Nanopore-based SNP calls agreed with Ion Torrent-based genotypes in 83.25%, but assignment of individuals to stock of origin only agreed in 61.5% of individuals, highlighting inherent challenges of Nanopore sequencing, such as resolution of homopolymer tracts and indels. However, poor representation of assayed salmon in the queried baseline data set contributed to poor assignment confidence on both platforms. Future improvements will focus on lowering turnaround time and cost, increasing accuracy and throughput, as well as augmentation of the existing baselines. If successfully implemented, Nanopore sequencing will provide an alternative method to the large-scale laboratory approach by providing mobile small batch genotyping to diverse stakeholders.


Assuntos
Sequenciamento por Nanoporos , Oncorhynchus kisutch , Alaska , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Oncorhynchus kisutch/genética , Análise de Sequência de DNA/métodos
6.
Mol Ecol ; 31(1): 134-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614262

RESUMO

Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.


Assuntos
Pesqueiros , Salmão , Migração Animal , Animais , Colúmbia Britânica , Interação Gene-Ambiente , Salmão/genética
7.
Ecol Evol ; 11(23): 16874-16889, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938479

RESUMO

Between 2013 and 2019, 63 presumed Chinook salmon Oncorhynchus tshawytscha sampled primarily in the Strait of Georgia (0.63% of total sample) were identified as potential Chinook-Coho (Oncorhynchus kisutch) hybrids by the presence of anomalous microsatellite genotypes. Their hybrid origin was confirmed by single nucleotide polymorphism amplification of two species-specific amplicons. Mitochondrial DNA indicated that most of these fish resulted from the hybridization of Coho salmon females and Chinook salmon males. Although no diagnostic external features were identified, several individuals displayed an abnormal scale arrangement on the caudal peduncle. One hybrid juvenile examined for meristics exhibited a pyloric caeca count intermediate between published values for Chinook and Coho salmon. Most hybrids originated in the Cowichan River during the 2014 brood year. Their prevalence in the watershed is a naturally occurring event, likely exacerbated by prolonged low water levels which limit habitat and delay Chinook salmon spawning, in addition to the differential abundance of the parental species. This research is the first to document ongoing natural hybridization (Chinook-Coho salmon crosses) and link it to habitat and climatic changes, and includes the identification of eight F1 adults and two juvenile backcross or F2 hybrids. The potential negative impacts of hybridization, particularly in Coho salmon through potential introgression, warrant hybrid identification as an ecosystem monitoring tool within a survey program.

9.
PLoS One ; 16(12): e0255752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919547

RESUMO

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.


Assuntos
Proteínas de Peixes/genética , Especiação Genética , Genoma , Estágios do Ciclo de Vida/genética , Reprodução/genética , Salmão/genética , Animais , Canadá , Feminino , Proteínas de Peixes/classificação , Proteínas de Peixes/metabolismo , Expressão Gênica , Genética Populacional , Genômica/métodos , Japão , Masculino , Oceano Pacífico , Polimorfismo Genético , Isolamento Reprodutivo , Rios , Salmão/classificação , Salmão/crescimento & desenvolvimento , Salmão/metabolismo , Sequenciamento Completo do Genoma
10.
Ecol Evol ; 11(11): 6846-6861, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141260

RESUMO

Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene-targeted PCR-based assay for next-generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single-gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.

11.
Evol Appl ; 14(5): 1365-1389, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025773

RESUMO

Wild Pacific salmon, including Chinook salmon Oncorhynchus tshawytscha, have been supplemented with hatchery propagation for over 50 years in support of increased ocean harvest, mitigation for hydroelectric development, and conservation of threatened populations. In Canada, the Wild Salmon Policy for Pacific salmon was established with the goal of maintaining and restoring healthy and diverse Pacific salmon populations, making conservation of wild salmon and their habitats the highest priority for resource management decision-making. For policy implementation, a new approach to the assessment and management of Chinook salmon and the associated hatchery production and fisheries management are needed. Implementation of genetic stock identification (GSI) and parentage-based tagging (PBT) for marine fisheries assessment may overcome problems associated with coded-wire tag-based (CWT) assessment and management of Chinook salmon fisheries, providing at a minimum information equivalent to that derived from the CWT program. GSI and PBT were used to identify Chinook salmon sampled in 2018 and 2019 marine fisheries (18,819 individuals genotyped) in British Columbia to specific conservation units (CU), populations, and broodyears. Individuals were genotyped at 391 single nucleotide polymorphisms via direct sequencing of amplicons. Very high accuracy of assignment to population and age (>99.5%) via PBT was observed for 1994 Chinook salmon of ages 2-4 years, with a 105,722-individual, 380-population baseline available for assignment. Application of a GSI-PBT system of identification to individuals in 2019 fisheries provided high-resolution estimates of stock composition, catch, and exploitation rate by CU or population, with fishery exploitation rates directly comparable to those provided by CWTs for 13 populations. GSI and PBT provide an alternate, cheaper, and more effective method in the assessment and management of Canadian-origin Chinook salmon relative to CWTs, and an opportunity for a genetics-based system to replace the current CWT system for salmon assessment.

12.
PeerJ ; 9: e11163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976968

RESUMO

Population-specific spatial and temporal distribution data are necessary to identify mechanisms regulating abundance and to manage anthropogenic impacts. However the distributions of highly migratory species are often difficult to resolve, particularly when multiple populations' movements overlap. Here we present an integrated model to estimate spatially-stratified, seasonal trends in abundance and population composition, using data from extensive genetic sampling of commercial and recreational Chinook salmon (Oncorhynchus tshawytscha) fisheries in southern British Columbia. We use the model to estimate seasonal changes in population-specific standardized catch per unit effort (a proxy for abundance) across six marine regions, while accounting for annual variability in sampling effort and uncertain genetic stock assignment. We also share this model as an R package stockseasonr for application to other regions and species. Even at the relatively small spatial scales considered here, we found that patterns in seasonal abundance differed among regions and stocks. While certain locations were clearly migratory corridors, regions within the Salish Sea exhibited diverse, and often weak, seasonal patterns in abundance, emphasizing that they are important, year-round foraging habitats. Furthermore, we found evidence that stocks with similar freshwater life histories and adult run timing, as well as relatively proximate spawning locations, exhibited divergent distributions. Our findings highlight subtle, but important differences in how adult Chinook salmon use marine habitats. Down-scaled model outputs could be used to inform ecosystem-based management efforts by resolving the degree to which salmon overlap with other species of concern, as well as specific fisheries. More broadly, variation in stock-specific abundance among regions indicates efforts to identify mechanisms driving changes in size-at-maturity and natural mortality should account for distinct marine distributions.

14.
PLoS One ; 15(10): e0240935, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119641

RESUMO

Sockeye salmon (Oncorhynchus nerka) is a commercially and culturally important species to the people that live along the northern Pacific Ocean coast. There are two main sockeye salmon ecotypes-the ocean-going (anadromous) ecotype and the fresh-water ecotype known as kokanee. The goal of this study was to better understand the population structure of sockeye salmon and identify possible genomic differences among populations and between the two ecotypes. In pursuit of this goal, we generated the first reference sockeye salmon genome assembly and an RNA-seq transcriptome data set to better annotate features of the assembly. Resequenced whole-genomes of 140 sockeye salmon and kokanee were analyzed to understand population structure and identify genomic differences between ecotypes. Three distinct geographic and genetic groups were identified from analyses of the resequencing data. Nucleotide variants in an immunoglobulin heavy chain variable gene cluster on chromosome 26 were found to differentiate the northwestern group from the southern and upper Columbia River groups. Several candidate genes were found to be associated with the kokanee ecotype. Many of these genes were related to ammonia tolerance or vision. Finally, the sex chromosomes of this species were better characterized, and an alternative sex-determination mechanism was identified in a subset of upper Columbia River kokanee.


Assuntos
Perfilação da Expressão Gênica/veterinária , Cadeias Pesadas de Imunoglobulinas/genética , Salmão/genética , Sequenciamento Completo do Genoma/veterinária , Animais , Cromossomos/genética , Ecótipo , Proteínas de Peixes/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Salmão/classificação , Análise de Sequência de RNA/veterinária
15.
PLoS Genet ; 16(8): e1008348, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845885

RESUMO

A thorough reconstruction of historical processes is essential for a comprehensive understanding of the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded recently, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored.


Assuntos
Distribuição Animal , Acúmulo de Mutações , Oncorhynchus kisutch/genética , Animais , Evolução Molecular , Modelos Genéticos
16.
Ecol Evol ; 10(13): 6461-6476, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724526

RESUMO

For Pacific salmon, the key fisheries management goal in British Columbia (BC) is to maintain and restore healthy and diverse Pacific salmon populations, making conservation of salmon biodiversity the highest priority for resource management decision-making. Salmon status assessments are often conducted on coded-wire-tagged subsets of indicator populations based on assumptions of little differentiation within or among proximal populations. In the current study of southern BC coho salmon (Oncorhynchus kisutch) populations, parentage-based tagging (PBT) analysis provided novel information on migration and life-history patterns to test the assumptions of biological homogeneity over limited (generally < 100 km) geographic distances and, potentially, to inform management of fisheries and hatchery broodstocks. Heterogeneity for location and timing of fishery captures, family productivity, and exploitation rate was observed over small geographic scales, within regions that are, or might be expected to be, within the area encompassed by a single-tagged indicator population. These results provide little support for the suggestion that information gained from tagged indicator populations is representative of marine distribution, productivity, and exploitation patterns of proximal populations.

17.
Ecol Evol ; 9(17): 9891-9906, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534702

RESUMO

In salmonid parentage-based tagging (PBT) applications, entire hatchery broodstocks are genotyped, and subsequently, progeny can be nonlethally sampled and assigned back to their parents using parentage analysis, thus identifying their hatchery of origin and brood year (i.e., age). Inter- and intrapopulation variability in migration patterns, life history traits, and fishery contributions can be determined from PBT analysis of samples derived from both fisheries and escapements (portion of a salmon population that does not get caught in fisheries and returns to its natal river to spawn). In the current study of southern British Columbia coho salmon (Oncorhynchus kisutch) populations, PBT analysis provided novel information on intrapopulation heterogeneity among males in the total number of progeny identified in fisheries and escapements, the proportion of progeny sampled from fisheries versus escapement, the proportion of two-year-old progeny (jacks) produced, and the within-season return time of progeny. Fishery recoveries of coho salmon revealed heterogeneity in migration patterns among and within populations, with recoveries from north and central coast fisheries distinguishing "northern migrating" from "resident" populations. In northern migrating populations, the mean distance between fishery captures of sibs (brothers and sisters) was significantly less than the mean distance between nonsibs, indicating the possible presence of intrapopulation genetic heterogeneity for migration pattern. Variation among populations in productivity and within populations in fish catchability indicated that population selection and broodstock management can be implemented to optimize harvest benefits from hatcheries. Application of PBT provided valuable information for assessment and management of hatchery-origin coho salmon in British Columbia.

18.
Evol Appl ; 12(2): 230-254, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697336

RESUMO

Wild Pacific salmon, including Coho salmon Onchorynchus kisutch, have been supplemented with hatchery propagation for over 50 years in support of increased ocean harvest and conservation of threatened populations. In Canada, the Wild Salmon Policy for Pacific salmon was established with the goal of maintaining and restoring healthy and diverse Pacific salmon populations, making conservation of wild salmon and their habitats the highest priority for resource management decision-making. A new approach to the assessment and management of wild coho salmon, and the associated hatchery production and fishery management is needed. Implementation of parentage-based tagging (PBT) may overcome problems associated with coded-wire tag-based (CWT) assessment and management of coho salmon fisheries, providing at a minimum information equivalent to that derived from the CWT program. PBT and genetic stock identification (GSI) were used to identify coho salmon sampled in fisheries (8,006 individuals) and escapements (1,692 individuals) in British Columbia to specific conservation units (CU), populations, and broodyears. Individuals were genotyped at 304 single nucleotide polymorphisms (SNPs) via direct sequencing of amplicons. Very high accuracy of assignment to population (100%) via PBT for 543 jack (age 2) assigned to correct age and collection location and 265 coded-wire tag (CWT, age 3) coho salmon assigned to correct age and release location was observed, with a 40,774-individual, 267-population baseline available for assignment. Coho salmon from un-CWTed enhanced populations contributed 65% of the catch in southern recreational fisheries in 2017. Application of a PBT-GSI system of identification to individuals in 2017 fisheries and escapements provided high-resolution estimates of stock composition, catch, and exploitation rate by CU or population, providing an alternate and more effective method in the assessment and management of Canadian-origin coho salmon relative to CWTs, and an opportunity for a genetic-based system to replace the current CWT system for coho salmon assessment.

19.
J Anim Ecol ; 88(1): 67-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790171

RESUMO

The phenology of long-distance migrations can influence individual fitness, moderate population dynamics and regulate the availability of ecosystem services to other trophic levels. Phenology varies within and among populations, and can be influenced by conditions individuals experience both prior to departure and encounter en route. Assessing how intrinsic and extrinsic factors (e.g., individual physical condition vs. environmental conditions) interact to influence variation in migratory phenologies across ecological scales is often limited due to logistical constraints associated with tracking large numbers of individuals from multiple populations simultaneously. We used two natural tags, DNA and otolith microstructure analysis, to estimate the relative influence of individual traits (life-history strategy, body size at departure and growth during migration), population-specific behaviours and interannual variability on the phenology of marine migrations in juvenile sockeye salmon Oncorhynchus nerka. We show that the timing and duration of juvenile sockeye salmon migrations were correlated with both life-history strategy and body size, while migration duration was also correlated with departure timing and growth rates during migration. Even after accounting for the effect of individual traits, several populations exhibited distinct migration phenologies. Finally, we observed substantial interannual and residual variation, suggesting stochastic environmental conditions moderate the influence of carry-over effects that develop prior to departure, as well as population-specific strategies. Migratory phenologies are shaped by complex interactions between drivers acting at multiple ecological and temporal scales. Given evidence that intraspecific diversity can stabilize ecological systems, conservation efforts should seek to maintain migratory variation among populations and preserve locally adapted phenotypes; however, variation within populations, which may buffer systems from environmental stochasticity, should also be regularly assessed and preserved.


Assuntos
Migração Animal , Ecossistema , Animais , Dinâmica Populacional , Salmão , Processos Estocásticos
20.
Artigo em Inglês | MEDLINE | ID: mdl-30419481

RESUMO

There is a paucity of information on the physiological changes that occur over the course of salmon early marine migration. Here we aim to provide insight on juvenile Coho salmon (Oncorhynchus kisutch) physiology using the changes in gene expression (cGRASP 44K microarray) of four tissues (brain, gill, muscle, and liver) across the parr to smolt transition in freshwater and through the first eight months of ocean residence. We also examined transcriptome changes with body size as a covariate. The strongest shift in the transcriptome for brain, gill, and muscle occurred between summer and fall in the ocean, representing physiological changes that we speculate may be associated with migration preparation to feeding areas. Metabolic processes in the liver were positively associated with body length, generally consistent with enhanced feeding opportunities. However, a notable exception to this metabolic pattern was for spring post-smolts sampled soon after entry into the ocean, which showed a pattern of gene expression more likely associated with depressed feeding or recent fasting. Overall, this study has revealed life stages that may be the most critical developmentally (fall post-smolt) and for survival (spring post-smolt) in the early marine environment. These life stages may warrant further investigation.


Assuntos
Água Doce , Oncorhynchus kisutch/genética , Água do Mar , Transcrição Gênica , Animais , Tamanho Corporal , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Oncorhynchus kisutch/crescimento & desenvolvimento , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...