Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 32(8): 958-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22874831

RESUMO

Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.


Assuntos
Secas , Eucalyptus/fisiologia , Fotossíntese/fisiologia , Doenças das Plantas , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Irrigação Agrícola , Clima , Eucalyptus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Chuva , Solo , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Regulação para Cima
2.
Tree Physiol ; 21(12-13): 989-99, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11498346

RESUMO

The crown structure of Eucalyptus nitens (Deane & Maiden) Maiden 6 years after thinning, and the development of stand leaf area index both immediately and 6 years after thinning, were investigated. Thinning did not alter branch angle, branching density or the relationship between branch size and branch leaf area. However, larger branches were found in the lower crown of thinned trees and the increase in leaf area as a result of thinning occurred on the northern aspect of the crown. The vertical distribution of leaf area in unthinned trees was skewed toward the top of the crown and correlated with live crown ratio. The vertical distribution of leaf area in thinned trees tended to be less skewed and was unrelated to tree size or dominance. Leaf area index, as estimated from light interception measurements, increased at a constant rate soon after thinning regardless of residual stocking. In the longer term, residual stocking had a strong influence on leaf area increase per tree and was correlated with changes in crown length.


Assuntos
Eucalyptus/fisiologia , Folhas de Planta/anatomia & histologia , Árvores/fisiologia , Eucalyptus/anatomia & histologia , Agricultura Florestal , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Tasmânia , Árvores/anatomia & histologia
3.
Tree Physiol ; 19(1): 1-12, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12651326

RESUMO

Green pruning of Eucalyptus nitens (Deane and Maiden) Maiden increases instantaneous rates of light-saturated CO(2) assimilation (A), and changes patterns of total leaf area and foliage distribution. We investigated the importance of such changes on the rate of recovery of growth following pruning. A simple process-based model was developed to estimate daily net biomass production (G(d)) of three-year-old plantation-grown trees over a 20-month period. The trees had been pruned by removal of 0, 50 or 70% of the length of green crown, equivalent to removal of 0, 55 or 88% of leaf area, respectively, when the plantation verged on canopy closure. Total G(d) was reduced by only 20% immediately following the 50%-pruning treatment, as a result of both the high leaf dark respiration and low A in the portion of the crown removed compared to the top of the crown. Pruning at the time of canopy closure preempted a natural and rapid decline in G(d) of the lower crown. Although leaf area index (L) was approximately 6.0 at the time of pruning, high light interception (95%) occurred with an L of 4.0. The 50%-pruning treatment reduced L to 3.5, but the physiological responses to pruning were sufficient to compensate fully for the reduction in intercepted radiation within 110 days of pruning. The 70%-pruning treatment reduced L to 1.9, and reduced G(d) by 77%, reflecting the removal of branches with high A in the mid and upper crown. Physiological responses to the 70%-pruning treatment were insufficient to increase G(d) to the value of unpruned trees during the study. Model sensitivity analysis showed that increases in A following pruning increased G(d) by 20 and 25% in the 50- and 70%-pruned trees, respectively, 20 months after pruning. Changes in leaf area/foliage distribution had a greater effect on G(d) of 50%-pruned trees (47% increase) than did changes in A. However, the reduction in photosynthetic potential associated with the 70%-pruning treatment resulted in only small changes in leaf area/foliage distribution, which consequently had little effect on G(d). The effects of physiological processes occurring within the crown and in response to green pruning on G(d) are discussed with respect to pruning of plantations.

4.
Tree Physiol ; 18(8_9): 521-528, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-12651338

RESUMO

A calibration curve was established to convert plant area index of Eucalyptus nitens (Deane and Maiden) Maiden, assessed with a Li-Cor LAI-2000, to leaf area index, LAI. Based on a comparison of this calibration curve with existing calibration curves for other species, we concluded that a generic calibration curve may be applicable for the assessment of LAI in eucalypt plantations. The Li-Cor LAI-2000 measurements were used to correlate the equilibrium LAI of E. nitens plantations with mean annual temperature. These and other data were then combined to develop relationships between LAI in both E. nitens and E. globulus Labill. plantations and mean annual temperature and water stress. In plantations of both species, LAI declined linearly with water stress. However, marked differences in the effect of suboptimal growth temperatures on LAI were observed between species: on cold sites, LAI of E. nitens was markedly higher than LAI of E. globulus. A simple analytic model of net primary production (NPP) was developed. In this model, increasing LAI increased light interception and hence dry matter production, but simultaneously increased canopy respiration. Consequently, for a given light utilization coefficient (epsilon), there was a value of LAI that maximized NPP. The model was parameterized for E. globulus and used to investigate the influences of water stress and mean annual temperature on LAI through their effects on epsilon. The model indicated that the value of LAI that was predicted to maximize NPP under various water and temperature stress regimes was similar to the value of LAI observed in the field under similar conditions only if leaf longevity was linked to water and temperature stress.

5.
Tree Physiol ; 16(8): 697-703, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14871692

RESUMO

Sapflow sensors were used to investigate variation in sapflow velocity at different positions in the sapwood of three-year-old Eucalyptus globulus ssp. globulus Labill. trees. Sapflow velocity was measured at 5-mm intervals across the sapwood by moving two probe sets simultaneously on two opposite radii. Another probe set placed in a fixed position at right angles to the first two sets acted as a control. A sapflow velocity ratio was defined as the velocity given by each moving sensor divided by that given by the static sensor. Correlation between observations of sapflow velocity at different positions exceeded 95%, and the ratio of velocity between any pair of sensors was constant. We observed radial variation in sapflow velocity across the sapwood with the lowest velocities at the center of the tree. Variation due to sensor position was high implying the need for large numbers of sensors for accurate estimates of sap flux. To overcome this need, we used a correction coefficient, namely a simple weighted average of the sapflow ratios with depth in the sapwood, for each fixed sensor. We recommend the use of three probe sets to estimate the correction coefficient. Subsequently, two probe sets can be placed at two fixed positions for routine measurements of sap flux.

6.
Tree Physiol ; 16(5): 469-76, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-14871715

RESUMO

In August 1990, a 2-ha plantation was established in an area where rainfall (about 515 mm year(-1)) was insufficient to meet evaporative demand. On nine occasions between September 1991 and April 1993, pressure-volume curves were constructed for irrigated and rainfed Eucalyptus globulus ssp. globulus Labill. and E. nitens (Deane and Maiden) Maiden trees. During the experiment, rainfed trees experienced six periods when predawn water potential was significantly lower than that of irrigated trees. In early spring of 1991 and 1992, osmotic potentials at full turgor and turgor loss point in the irrigated E. nitens were significantly lower than at other times of the year, probably because of winter hardening. Water stress reduced osmotic potential and increased bulk elastic modulus in E. nitens, whereas the reverse occurred in E. globulus. However, treatment differences with respect to changes in osmotic and elastic properties were commonly overshadowed by interspecific differences. These were most apparent at the end of the sixth period of water stress when osmotic potentials at full and zero turgor were significantly higher and bulk elastic modulus and relative water content at turgor loss point were significantly lower in E. globulus than in E. nitens. We conclude that the drought-tolerance responses of E. globulus make it a more suitable species than E. nitens for establishment on sites where moderate water stress is experienced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...