Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 236(2): 158-168, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34693823

RESUMO

Fretting-corrosion at the modular taper junction in total hip replacements (THR), leading to implant failure, has been identified as a clinical concern and has received increased interest in recent years. There are many parameters thought to affect the performance of the taper junction, with the assembly process being one of the few consistently identified to have a direct impact. Despite this, the assembly process used by surgeons during THR surgery differs from a suggested 'ideal' process. For example, taper junctions of cutting tools should be pushed together rather than impacted, while ensuring as much concentricity as possible between the male and female taper and loading axis. This study devised six simple assembly methodologies to investigate how surgical variations affect the success of the compressive fit achieved at the taper interface compared to a controlled assembly method, designed to represent a more 'ideal' scenario. Key findings from this study suggest that a more successful and repeatable engagement can be achieved by quasi-statically loading the male and female taper concentrically with the loading axis. This was shown by a greater disassembly to assembly force ratio of 0.626 ± 0.07 when assembled using the more 'ideal' process, compared to 0.480 ± 0.05 when using a method closer to that used by a surgeon intraoperatively. Findings from this study can be used to help inform new surgical instrumentation and an improved surgical assembly method.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Corrosão , Feminino , Humanos , Masculino , Desenho de Prótese , Falha de Prótese
2.
Med Eng Phys ; 83: 34-47, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807346

RESUMO

Taper degradation in Total Hip Replacements (THR) has been identified as a clinical concern, and the degradation occurring at these interfaces has received increased interest in recent years. Wear and corrosion products produced at the taper junction are associated with adverse local tissue responses, leading to early failure and revision surgery. Retrieval and in-vitro studies have found that variations in taper design affect degradation. However, there is a lack of consistent understanding within the literature of what makes a good taper interface. Previous studies assessed different design variations using their global parameters assuming a perfect cone such as: taper length, cone angle and diameters. This study assessed geometrical variations of as-manufactured head and stem tapers and any local deviations from their geometry. The purpose of this study was to provide a greater insight into possible engagement, a key performance influencing parameter predicted by Morse taper connection theory. This was achieved by taking measurements of twelve different commercially available male tapers and six female tapers using a coordinate measurement machine (CMM). The results suggested that engagement is specific to a particular head-stem couple. This is subject to both their micro-scale deviations, superimposed on their macro-scale differences. Differences in cone angles between female and male tapers from the same manufacturer was found to create a predominately proximal contact. However, distally mismatched couples are present in some metal-on-metal head-stem couples. On a local scale, different deviation patterns were observed from the geometry which appeared to be linked to the manufacturing process. Future work will look at using this measurement methodology to fully characterise an optimal modular taper junction for a THR prosthesis.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Corrosão , Feminino , Humanos , Masculino , Desenho de Prótese , Falha de Prótese , Reoperação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...