Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828778

RESUMO

Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.

2.
iScience ; 26(12): 108407, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058303

RESUMO

The lacZ gene of Escherichia coli encodes ß-galactosidase (ß-gal), a lactose metabolism enzyme of the lactose operon. Previous chemical modification or site-directed mutagenesis experiments have identified 21 amino acids that are essential for ß-gal catalytic activity. We have assembled over 10,000 lacZ mutations from published studies that were collected using a positive selection assay to identify mutations in lacZ that disrupted ß-gal function. We analyzed 6,465 independent lacZ mutations that resulted in 2,732 missense mutations that impaired ß-gal function. Those mutations affected 492 of the 1,023 lacZ codons, including most of the 21 previously known residues critical for catalytic activity. Most missense mutations occurred near the catalytic site and in regions important for subunit tetramerization. Overall, our work provides a comprehensive and detailed map of the amino acid residues affecting the structure and catalytic activity of the ß-gal enzyme.

3.
Environ Mol Mutagen ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115239

RESUMO

Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.

5.
Toxicol Sci ; 191(2): 266-275, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36534918

RESUMO

Since initial regulatory action in 2010 in Canada, bisphenol A (BPA) has been progressively replaced by structurally related alternative chemicals. Unfortunately, many of these chemicals are data-poor, limiting toxicological risk assessment. We used high-throughput transcriptomics to evaluate potential hazards and compare potencies of BPA and 15 BPA alternative chemicals in cultured breast cancer cells. MCF-7 cells were exposed to BPA and 15 alternative chemicals (0.0005-100 µM) for 48 h. TempO-Seq (BioSpyder Inc) was used to examine global transcriptomic changes and estrogen receptor alpha (ERα)-associated transcriptional changes. Benchmark concentration (BMC) analysis was conducted to identify 2 global transcriptomic points of departure: (1) the lowest pathway median gene BMC and (2) the 25th lowest rank-ordered gene BMC. ERα activation was evaluated using a published transcriptomic biomarker and an ERα-specific transcriptomic point of departure was derived. Genes fitting BMC models were subjected to upstream regulator and canonical pathway analysis in Ingenuity Pathway Analysis. Biomarker analysis identified BPA and 8 alternative chemicals as ERα active. Global and ERα transcriptomic points of departure produced highly similar potency rankings with bisphenol AF as the most potent chemical tested, followed by BPA and bisphenol C. Further, BPA and transcriptionally active alternative chemicals enriched similar gene sets associated with increased cell division and cancer-related processes. These data provide support for future read-across applications of transcriptomic profiling for risk assessment of data-poor chemicals and suggest that several BPA alternative chemicals may cause hazards at similar concentrations to BPA.


Assuntos
Compostos Benzidrílicos , Receptor alfa de Estrogênio , Transcriptoma , Humanos , Compostos Benzidrílicos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Estrona , Perfilação da Expressão Gênica , Células MCF-7 , Estrogênios/efeitos adversos , Estrogênios/farmacologia
6.
Environ Mol Mutagen ; 64(2): 105-122, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495195

RESUMO

Genotoxicity assessment is a critical component in the development and evaluation of chemicals. Traditional genotoxicity assays (i.e., mutagenicity, clastogenicity, and aneugenicity) have been limited to dichotomous hazard classification, while other toxicity endpoints are assessed through quantitative determination of points-of-departures (PODs) for setting exposure limits. The more recent higher-throughput in vitro genotoxicity assays, many of which also provide mechanistic information, offer a powerful approach for determining defined PODs for potency ranking and risk assessment. In order to obtain relevant human dose context from the in vitro assays, in vitro to in vivo extrapolation (IVIVE) models are required to determine what dose would elicit a concentration in the body demonstrated to be genotoxic using in vitro assays. Previous work has demonstrated that application of IVIVE models to in vitro bioactivity data can provide PODs that are protective of human health, but there has been no evaluation of how these models perform with in vitro genotoxicity data. Thus, the Genetic Toxicology Technical Committee, under the Health and Environmental Sciences Institute, conducted a case study on 31 reference chemicals to evaluate the performance of IVIVE application to genotoxicity data. The results demonstrate that for most chemicals considered here (20/31), the PODs derived from in vitro data and IVIVE are health protective relative to in vivo PODs from animal studies. PODs were also protective by assay target: mutations (8/13 chemicals), micronuclei (9/12), and aneugenicity markers (4/4). It is envisioned that this novel testing strategy could enhance prioritization, rapid screening, and risk assessment of genotoxic chemicals.


Assuntos
Dano ao DNA , Mutagênicos , Animais , Humanos , Mutação , Mutagênicos/toxicidade , Medição de Risco , Testes de Mutagenicidade/métodos
7.
Environ Mol Mutagen ; 64(1): 4-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36345771

RESUMO

Quantitative relationships between carcinogenic potency and mutagenic potency have been previously examined using a benchmark dose (BMD)-based approach. We extended those analyses by using human exposure data for 48 compounds to calculate carcinogenicity-derived and genotoxicity-derived margin of exposure values (MOEs) that can be used to prioritize substances for risk management. MOEs for 16 of the 48 compounds were below 10,000, and consequently highlighted for regulatory concern. Of these, 15 were highlighted using genotoxicity-derived (micronucleus [MN] dose-response data) MOEs. A total of 13 compounds were highlighted using carcinogenicity-derived MOEs; 12 compounds were overlapping. MOEs were also calculated using transgenic rodent (TGR) mutagenicity data. For 10 of the 12 compounds examined using TGR data, the results similarly revealed that mutagenicity-derived MOEs yield regulatory decisions that correspond with those based on carcinogenicity-derived MOEs. The effect of benchmark response (BMR) on MOE determination was also examined. Reinterpretation of the analyses using a BMR of 50% indicated that four out of 15 compounds prioritized using MN-derived MOEs based on a default BMR of 5% would have been missed. The results indicate that regulatory decisions based on in vivo genotoxicity dose-response data would be consistent with those based on carcinogenicity dose-response data; in some cases, genotoxicity-based decisions would be more conservative. Going forward, and in the absence of carcinogenicity data, in vivo genotoxicity assays (MN and TGR) can be used to effectively prioritize substances for regulatory action. Routine use of the MOE approach necessitates the availability of reliable human exposure estimates, and consensus regarding appropriate BMRs for genotoxicity endpoints.


Assuntos
Carcinógenos , Mutagênicos , Animais , Humanos , Mutagênicos/toxicidade , Testes de Mutagenicidade/métodos , Mutagênese , Carcinógenos/toxicidade , Dano ao DNA , Roedores
8.
Arch Toxicol ; 96(7): 2067-2085, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445829

RESUMO

Risk assessments are increasingly reliant on information from in vitro assays. The in vitro micronucleus test (MNvit) is a genotoxicity test that detects chromosomal abnormalities, including chromosome breakage (clastogenicity) and/or whole chromosome loss (aneugenicity). In this study, MNvit datasets for 292 chemicals, generated by the US EPA's ToxCast program, were evaluated using a decision tree-based pipeline for hazard identification. Chemicals were tested with 19 concentrations (n = 1) up to 200 µM, in the presence and absence of Aroclor 1254-induced rat liver S9. To identify clastogenic chemicals, %MN values at each concentration were compared to a distribution of batch-specific solvent controls; this was followed by cytotoxicity assessment and benchmark concentration (BMC) analyses. The approach classified 157 substances as positives, 25 as negatives, and 110 as inconclusive. Using the approach described in Bryce et al. (Environ Mol Mutagen 52:280-286, 2011), we identified 15 (5%) aneugens. IVIVE (in vitro to in vivo extrapolation) was employed to convert BMCs into administered equivalent doses (AEDs). Where possible, AEDs were compared to points of departure (PODs) for traditional genotoxicity endpoints; AEDs were generally lower than PODs based on in vivo endpoints. To facilitate interpretation of in vitro MN assay concentration-response data for risk assessment, exposure estimates were utilized to calculate bioactivity exposure ratio (BER) values. BERs for 50 clastogens and two aneugens had AEDs that approached exposure estimates (i.e., BER < 100); these chemicals might be considered priorities for additional testing. This work provides a framework for the use of high-throughput in vitro genotoxicity testing for priority setting and chemical risk assessment.


Assuntos
Aneugênicos , Mutagênicos , Aneugênicos/toxicidade , Animais , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Ratos , Medição de Risco
9.
Toxicol Sci ; 186(2): 269-287, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35135005

RESUMO

The replacement of regulated brominated flame retardants and plasticizers with organophosphate esters (OPEs) has led to their pervasive presence in the environment and in biological matrices. Further, there is evidence that exposure to some of these chemicals is associated with reproductive toxicity. Using a high-content imaging approach, we assessed the effects of exposure to 9 OPEs on cells related to reproductive function: KGN human granulosa cells, MA-10 mouse Leydig cells, and C18-4 mouse spermatogonial cells. The effects of OPEs were compared with those of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a legacy brominated flame retardant. Alterations in several important cell features, including cell survival, mitochondrial dynamics, oxidative stress, lysosomes, and lipid droplets, were analyzed. Most of the OPEs tested displayed higher cytotoxicity than BDE-47 in all 3 cell lines. Effects on phenotypic parameters were specific for each cell type. Several OPEs increased total mitochondria, decreased lysosomes, increased the total area of lipid droplets, and induced oxidative stress in KGN cells; these endpoints were differentially affected in MA-10 and C18-4 cells. Alterations in cell phenotypes were highly correlated in the 2 steroidogenic cell lines for a few triaryl OPEs. Potency ranking using 2 complementary approaches, Toxicological Prioritization Index analyses and the lowest benchmark concentration/administered equivalent dose method, revealed that while most of the OPEs tested were more potent than BDE-47, others showed little to no effect. We propose that these approaches serve as lines of evidence in a screening strategy to identify the potential for reproductive and endocrine effects of emerging chemicals and assist in regulatory decision-making.


Assuntos
Retardadores de Chama , Animais , Linhagem Celular , Monitoramento Ambiental , Ésteres/análise , Ésteres/toxicidade , Feminino , Retardadores de Chama/toxicidade , Masculino , Camundongos , Organofosfatos/toxicidade , Plastificantes/toxicidade
10.
Biol Reprod ; 106(3): 613-627, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34792101

RESUMO

The developmental and reproductive toxicity associated with exposure to phthalates has motivated a search for alternatives. However, there is limited knowledge regarding the adverse effects of some of these chemicals. We used high-content imaging to compare the effects of mono (2-ethylhexyl) phthalate (MEHP) with six alternative plasticizers: di-2-ethylhexyl terephthalate (DEHTP); diisononyl-phthalate (DINP); di-isononylcyclohexane-1,2-dicarboxylate (DINCH); 2-ethylhexyl adipate (DEHA); 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and di-iso-decyl-adipate (DIDA). A male germ spermatogonial cell line (C18-4), a Sertoli cell line (TM4) and two steroidogenic cell lines (MA-10 Leydig and KGN granulosa) were exposed for 48 h to each chemical (0.001-100 µM). Cell images were analyzed to assess cytotoxicity and effects on phenotypic endpoints. Only MEHP (100 µM) was cytotoxic and only in C18-4 cells. However, several plasticizers had distinct phenotypic effects in all four cell lines. DINP increased Calcein intensity in C18-4 cells, whereas DIDA induced oxidative stress. In TM4 cells, MEHP, and DINCH affected lipid droplet numbers, while DEHTP and DINCH increased oxidative stress. In MA-10 cells, MEHP increased lipid droplet areas and oxidative stress; DINP decreased the number of lysosomes, while DINP, DEHA, and DIDA altered mitochondrial activity. In KGN cells, MEHP, DINP and DINCH increased the number of lipid droplets, whereas DINP decreased the number of lysosomes, increased oxidative stress and affected mitochondria. The Toxicological Priority Index (ToxPi) provided a visual illustration of the cell line specificity of the effects on phenotypic parameters. The lowest administered equivalent doses were observed for MEHP. We propose that this approach may assist in screening alternative plasticizers.


Assuntos
Ácidos Ftálicos , Plastificantes , Adipatos , Linhagem Celular , Humanos , Masculino , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Células de Sertoli
11.
ALTEX ; 39(1): 123-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34818430

RESUMO

Internationally, there are thousands of existing and newly introduced chemicals in commerce, highlighting the ongoing importance of innovative approaches to identify emerging chemicals of concern. For many chemicals, there is a paucity of hazard and exposure data. Thus, there is a crucial need for efficient and robust approaches to address data gaps and support risk-based prioritization. Several studies have demonstrated the utility of in vitro bioactivity data from the ToxCast program in deriving points of departure (PODs). ToxCast contains data for nearly 1,400 endpoints per chemical, and the bioactivity concentrations, indicative of potential adverse outcomes, can be converted to human-equivalent PODs using high-throughput toxicokinetics (HTTK) modeling. However, data gaps need to be addressed for broader application: the limited chemical space of HTTK and quantitative high-throughput screening data. Here we explore the applicability of in silico models to address these data needs. Specifically, we used ADMET predictor for HTTK predictions and a generalized read-across approach to predict ToxCast bioactivity potency. We applied these models to profile 5,801 chemicals on Canada's Domestic Substances List (DSL). To evaluate the approach's performance, bioactivity PODs were compared with in vivo results from the EPA Toxicity Values database for 1,042 DSL chemicals. Comparisons demonstrated that the bioac­tivity PODs, based on ToxCast data or read-across, were conservative for 95% of the chemicals. Comparing bioactivity PODs to human exposure estimates supports the identification of chemicals of potential interest for further work. The bioac­tivity workflow shows promise as a powerful screening tool to support effective triaging of chemical inventories.


Assuntos
Ensaios de Triagem em Larga Escala , Bases de Dados Factuais , Humanos , Medição de Risco , Toxicocinética
12.
Toxicol Sci ; 180(2): 224-238, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33501994

RESUMO

Concerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs). In all 3 cell lines, BPA was one of the least cytotoxic bisphenol compounds tested, whereas BPM and BPTMC were the most cytotoxic. Interestingly, BPF and BPS were cytotoxic only in MA-10 cells. Effects on phenotypic parameters, including mitochondria, lysosomes, lipid droplets, and oxidative stress, were both bisphenol- and cell-line specific. BPA exposure affected mitochondria (BMC: 1.2 µM; AED: 0.09 mg/kg/day) in C18-4 cells. Lysosome numbers were increased in MA-10 cells exposed to BPA or BPAF but decreased in KGN cells exposed to BPAF or BPM. Lipid droplets were decreased in C18-4 cells exposed to BPF and in MA-10 cells exposed to BPTMC but increased in BPF, BPM, and BPTMC-exposed KGN cells. BPA and BPM exposure induced oxidative stress in MA-10 and KGN cells, respectively. In summary, structurally similar bisphenols displayed clear cell-line-specific differences in BMC and AED values for effects on cell viability and phenotypic endpoints. This approach, together with additional data on human exposure, may aid in the selection and prioritization of responsible replacements for BPA. .


Assuntos
Compostos Benzidrílicos , Sulfonas , Compostos Benzidrílicos/toxicidade , Feminino , Células da Granulosa , Humanos , Fenóis/toxicidade
13.
Front Toxicol ; 3: 748406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295100

RESUMO

In 2012, the Council of Canadian Academies published the expert panel on integrated testing of pesticide's report titled: Integrating emerging technologies into chemical safety assessment. This report was prepared for the Government of Canada in response to a request from the Minister of Health and on behalf of the Pest Management Regulatory Agency. It examined the scientific status of the use of integrated testing strategies for the regulatory health risk assessment of pesticides while noting the data-rich/poor dichotomy that exists when comparing pesticide formulations to most industrial chemicals. It also noted that the adoption of integrated approaches to testing and assessment (IATA) strategies may refine and streamline testing of chemicals, as well as improve results in the future. Moreover, the experts expected to see an increase in the use of integrated testing strategies over the next decade, resulting in improved evidence-based decision-making. Subsequent to this report, there has been great advancements in IATA strategies, which includes the incorporation of adverse outcome pathways (AOPs) and new approach methodologies (NAMs). This perspective provides the first Canadian regulatory update on how Health Canada is also advancing the incorporation of alternative, non-animal strategies, using a weight of evidence approach, for the evaluation of pest control products and industrial chemicals. It will include specific initiatives and describe how this work is leading to the creation of next generation risk assessments. It also reflects Health Canada's commitment towards implementing the 3Rs of animal testing: reduce, refine and replace the need for animal studies, whenever possible.

14.
Comput Toxicol ; 202021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35368437

RESUMO

Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.

15.
Commun Biol ; 3(1): 438, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796912

RESUMO

Transgenic rodent (TGR) models use bacterial reporter genes to quantify in vivo mutagenesis. Pairing TGR assays with next-generation sequencing (NGS) enables comprehensive mutation pattern analysis to inform mutational mechanisms. We used this approach to identify 2751 independent lacZ mutations in the bone marrow of MutaMouse animals exposed to four chemical mutagens: benzo[a]pyrene, N-ethyl-N-nitrosourea, procarbazine, and triethylenemelamine. We also collected published data for 706 lacZ mutations from eight additional environmental mutagens. We report that lacZ gene sequencing generates chemical-specific mutation signatures observed in human cancers with established environmental causes. For example, the mutation signature of benzo[a]pyrene, a carcinogen present in tobacco smoke, matched the signature associated with tobacco-induced lung cancers. Our results suggest that the analysis of chemically induced mutations in the lacZ gene shortly after exposure provides an effective approach to characterize human-relevant mechanisms of carcinogenesis and propose novel environmental causes of mutation signatures observed in human cancers.


Assuntos
Genes Reporter , Mutação/genética , Neoplasias/genética , Animais , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos Transgênicos , Taxa de Mutação , Transgenes , beta-Galactosidase/genética
16.
Sci Rep ; 9(1): 13775, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551502

RESUMO

The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse's whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.


Assuntos
Genoma Humano/genética , Polimorfismo de Nucleotídeo Único/genética , Transgenes/genética , Animais , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA/genética , Feminino , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Sequenciamento Completo do Genoma/métodos
17.
Commun Biol ; 2: 228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240266

RESUMO

Understanding the effects of environmental exposures on germline mutation rates has been a decades-long pursuit in genetics. We used next-generation sequencing and comparative genomic hybridization arrays to investigate genome-wide mutations in the offspring of male mice exposed to benzo(a)pyrene (BaP), a common environmental pollutant. We demonstrate that offspring developing from sperm exposed during the mitotic or post-mitotic phases of spermatogenesis have significantly more de novo single nucleotide variants (1.8-fold; P < 0.01) than controls. Both phases of spermatogenesis are susceptible to the induction of heritable mutations, although mutations arising from post-fertilization events are more common after post-mitotic exposure. In addition, the mutation spectra in sperm and offspring of BaP-exposed males are consistent. Finally, we report a significant increase in transmitted copy number duplications (P = 0.001) in BaP-exposed sires. Our study demonstrates that germ cell mutagen exposures induce genome-wide mutations in the offspring that may be associated with adverse health outcomes.


Assuntos
Benzo(a)pireno/efeitos adversos , Poluentes Ambientais/efeitos adversos , Mutagênicos/efeitos adversos , Mutação , Exposição Paterna , Espermatozoides/efeitos dos fármacos , Animais , Variações do Número de Cópias de DNA , Exposição Ambiental , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Mitose/genética , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética
18.
Environ Mol Mutagen ; 60(5): 410-420, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30353947

RESUMO

Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are ubiquitous environmental contaminants formed during incomplete combustion of organic materials. Our prior work showed that transplacental exposure to BaP depletes ovarian follicles and increases prevalence of epithelial ovarian tumors later in life. We used the MutaMouse transgenic rodent model to address the hypothesis that ovarian mutations play a role in tumorigenesis caused by prenatal exposure to BaP. Pregnant MutaMouse females were treated with 0, 10, 20, or 40 mg/(kg day) BaP orally on gestational days 7-16, covering critical windows of ovarian development. Female offspring were euthanized at 10 weeks of age; some ovaries with oviducts were processed for follicle counting; other ovaries/oviducts and bone marrow were processed for determination of lacZ mutant frequency (MF). Mutant plaques were pooled within dose groups and sequenced to determine the mutation spectrum. BaP exposure caused highly significant dose-related decreases in ovarian follicles and increases in ovarian/oviductal and bone marrow mutant frequencies at all doses. Absence of follicles, cell packets, and epithelial tubular structures were observed with 20 and 40 mg/(kg day) BaP. Depletion of ovarian germ cells was inversely associated with ovarian MF. BaP induced primarily G > T and G > C transversions and deletions in ovaries/oviducts and bone marrow cells and produced a mutation signature highly consistent with that of tobacco smoking in human cancers. Overall, our results show that prenatal BaP exposure significantly depletes ovarian germ cells, causes histopathological abnormalities, and increases the burden of ovarian/oviductal mutations, which may be involved in pathogenesis of epithelial ovarian tumors. Environ. Mol. Mutagen. 60:410-420, 2019. © 2018 Her Majesty the Queen in Right of Canada.


Assuntos
Benzo(a)pireno/toxicidade , Exposição Materna , Troca Materno-Fetal/fisiologia , Mutagênicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Poluentes Ambientais/toxicidade , Feminino , Óperon Lac/genética , Camundongos , Mutação/efeitos dos fármacos , Mutação/genética , Folículo Ovariano/citologia , Folículo Ovariano/patologia , Gravidez
19.
Mutat Res Rev Mutat Res ; 773: 26-50, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28927533

RESUMO

Individuals who smoke generally do so with the knowledge of potential consequences to their own health. What is rarely considered are the effects of smoking on their future children. The objective of this work was to review the scientific literature on the effects of paternal smoking on sperm and assess the consequences to offspring. A literature search identified over 200 studies with relevant data in humans and animal models. The available data were reviewed to assess the weight of evidence that tobacco smoke is a human germ cell mutagen and estimate effect sizes. These results were used to model the potential increase in genetic disease burden in offspring caused by paternal smoking, with specific focus on aneuploid syndromes and intellectual disability, and the socioeconomic impacts of such an effect. The review revealed strong evidence that tobacco smoking is associated with impaired male fertility, and increases in DNA damage, aneuploidies, and mutations in sperm. Studies support that these effects are heritable and adversely impact the offspring. Our model estimates that, with even a modest 25% increase in sperm mutation frequency caused by smoke-exposure, for each generation across the global population there will be millions of smoking-induced de novo mutations transmitted from fathers to offspring. Furthermore, paternal smoking is estimated to contribute to 1.3 million extra cases of aneuploid pregnancies per generation. Thus, the available evidence makes a compelling case that tobacco smoke is a human germ cell mutagen with serious public health and socio-economic implications. Increased public education should be encouraged to promote abstinence from smoking, well in advance of reproduction, to minimize the transmission of harmful mutations to the next-generation.


Assuntos
Herança Paterna , Fumar/efeitos adversos , Espermatozoides/patologia , Aneuploidia , Animais , Dano ao DNA , Feminino , Doenças Genéticas Inatas/etiologia , Doenças Genéticas Inatas/patologia , Instabilidade Genômica , Humanos , Infertilidade Masculina/patologia , Masculino , Modelos Animais , Mutação , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Saúde Pública , Fatores Socioeconômicos , Espermatozoides/efeitos dos fármacos , Nicotiana/efeitos adversos
20.
Mutagenesis ; 32(4): 463-470, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575466

RESUMO

Identifying chemical exposures that can cause germline mutations is important as these mutations can be inherited, impacting both individual and population health. However, germline mutations are extremely rare and difficult to detect. Chemically induced germline mutations can be detected through analysis of highly unstable tandem repeat DNA. We recently developed a single-molecule PCR (SM-PCR) approach to quantify mutations at a mouse microsatellite locus (Mm2.2.1) in sperm for such purposes. In this study, we refine this approach through the combined analysis of mouse microsatellites Mm2.2.1 and Mm19.2.3. Mice were exposed to 0, 25, 50 or 100 mg/kg/day benzo(a)pyrene (BaP) by oral gavage for 28 days and sperm sampled 42 days after the end of exposure to measure effects on dividing spermatogonia. DNA was diluted to a single genome per PCR well for amplification of microsatellites in singleplex and multiplex reactions, and alleles were sized to identify mutations using capillary electrophoresis. Analysis of ~300-500 molecules per animal at both microsatellite loci, when tested individually, showed a ~2-fold increase in mutations relative to the controls at both the 50 and 100 mg/kg/day BaP doses. Multiplex SM-PCR revealed similar increases in mutation frequencies in both microsatellites. Comparison with results from a previous lacZ mutation assay conducted on the same mice revealed that although microsatellite mutations are a sensitive endpoint for detecting changes in mutation frequencies at lower doses, they appear to be saturable and thus have a reduced dynamic range. These results confirm that BaP is a male germ cell mutagen that broadly impacts tandem repeat DNA. Likewise, addition of a second hypervariable microsatellite increases the sensitivity of this assay.


Assuntos
Benzopirenos/toxicidade , Repetições de Microssatélites , Mutagênicos/toxicidade , Espermatogônias/efeitos dos fármacos , Animais , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Mutação em Linhagem Germinativa , Masculino , Camundongos , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...