Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 764703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796168

RESUMO

Novel bone regeneration strategies often show promise in rodent models yet are unable to successfully translate to clinical therapy. Sheep, goats, and dogs are used as translational models in preparation for human clinical trials. While human MSCs (hMSCs) undergo osteogenesis in response to well-defined protocols, canine MSCs (cMSCs) are more incompletely characterized. Prior work suggests that cMSCs require additional agonists such as IGF-1, NELL-1, or BMP-2 to undergo robust osteogenic differentiation in vitro. When compared directly to hMSCs, cMSCs perform poorly in vivo. Thus, from both mechanistic and clinical perspectives, cMSC and hMSC-mediated bone regeneration may differ. The objectives of this study were twofold. The first was to determine if previous in vitro findings regarding cMSC osteogenesis were substantiated in vivo using an established murine calvarial defect model. The second was to assess in vitro ALP activity and endogenous BMP-2 gene expression in both canine and human MSCs. Calvarial defects (4 mm) were treated with cMSCs, sub-therapeutic BMP-2, or the combination of cMSCs and sub-therapeutic BMP-2. At 28 days, while there was increased healing in defects treated with cMSCs, defects treated with cMSCs and BMP-2 exhibited the greatest degree of bone healing as determined by quantitative µCT and histology. Using species-specific qPCR, cMSCs were not detected in relevant numbers 10 days after implantation, suggesting that bone healing was mediated by anabolic cMSC or ECM-driven cues and not via engraftment of cMSCs. In support of this finding, defects treated with cMSC + BMP-2 exhibited robust deposition of Collagens I, III, and VI using immunofluorescence. Importantly, cMSCs exhibited minimal ALP activity unless cultured in the presence of BMP-2 and did not express endogenous canine BMP-2 under any condition. In contrast, human MSCs exhibited robust ALP activity in all conditions and expressed human BMP-2 when cultured in control and osteoinduction media. This is the first in vivo study in support of previous in vitro findings regarding cMSC osteogenesis, namely that cMSCs require additional agonists to initiate robust osteogenesis. These findings are highly relevant to translational cell-based bone healing studies and represent an important finding for the field of canine MSC-mediated bone regeneration.

2.
J Biomed Mater Res A ; 106(9): 2382-2393, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29633508

RESUMO

Tissue engineered bone grafts based on bone marrow mesenchymal stromal cells (MSCs) are being actively developed for craniomaxillofacial (CMF) applications. As for all tissue engineered implants, the bone-regenerating capacity of these MSC-based grafts must first be evaluated in animal models prior to human trials. Canine models have traditionally resulted in improved clinical translation of CMF grafts relative to other animal models. However, the utility of canine CMF models for evaluating MSC-based bone grafts rests on canine MSCs (cMSCs) responding in a similar manner to scaffold-based stimuli as human MSCs (hMSCs). Herein, cMSC and hMSC responses to polyethylene glycol (PEG)-based scaffolds were therefore compared in the presence or absence of osteoinductive polydimethylsiloxane (PDMS). Notably, the conjugation of PDMS to PEG-based constructs resulted in increases in both cMSC and hMSC osteopontin and calcium deposition. Based on these results, cMSCs were further used to assess the efficacy of tethered bone morphogenic protein 2 (BMP2) in enhancing PEG-PDMS scaffold osteoinductivity. Addition of low doses of tethered BMP2 (100 ng/mL) to PEG-PDMS systems increased cMSC expression of osterix and osteopontin compared to both PEG-PDMS and PEG-BMP2 controls. Furthermore, these increases were comparable to effects seen with up to five-times higher BMP2 doses noted in literature. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2382-2393, 2018.


Assuntos
Células da Medula Óssea/citologia , Osso e Ossos/fisiologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adipogenia , Animais , Biomarcadores/metabolismo , Condrogênese , Dimetilpolisiloxanos/química , Cães , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Osteogênese , Polietilenoglicóis/química , Adulto Jovem
3.
Stem Cell Res Ther ; 8(1): 218, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974260

RESUMO

BACKGROUND: The dog represents an excellent large animal model for translational cell-based studies. Importantly, the properties of canine multipotent stromal cells (cMSCs) and the ideal tissue source for specific translational studies have yet to be established. The aim of this study was to characterize cMSCs derived from synovium, bone marrow, and adipose tissue using a donor-matched study design and a comprehensive series of in-vitro characterization, differentiation, and immunomodulation assays. METHODS: Canine MSCs were isolated from five dogs with cranial cruciate ligament rupture. All 15 cMSC preparations were evaluated using colony forming unit (CFU) assays, flow cytometry analysis, RT-PCR for pluripotency-associated genes, proliferation assays, trilineage differentiation assays, and immunomodulation assays. Data were reported as mean ± standard deviation and compared using repeated-measures analysis of variance and Tukey post-hoc test. Significance was established at p < 0.05. RESULTS: All tissue samples produced plastic adherent, spindle-shaped preparations of cMSCs. Cells were negative for CD34, CD45, and STRO-1 and positive for CD9, CD44, and CD90, whereas the degree to which cells were positive for CD105 was variable depending on tissue of origin. Cells were positive for the pluripotency-associated genes NANOG, OCT4, and SOX2. Accounting for donor and tissue sources, there were significant differences in CFU potential, rate of proliferation, trilineage differentiation, and immunomodulatory response. Synovium and marrow cMSCs exhibited superior early osteogenic activity, but when assessing late-stage osteogenesis no significant differences were detected. Interestingly, bone morphogenic protein-2 (BMP-2) supplementation was necessary for early-stage and late-stage osteogenic differentiation, a finding consistent with other canine studies. Additionally, synovium and adipose cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger aggregates in chondrogenic assays, although proteoglycan and collagen type II staining were subjectively decreased in adipose pellets as compared to synovial and marrow pellets. Lastly, cMSCs derived from all three tissue sources modulated murine macrophage TNF-α and IL-6 levels in a lipopolysaccharide-stimulated coculture assay. CONCLUSIONS: While cMSCs from synovium, marrow, and adipose tissue share a number of similarities, important differences in proliferation and trilineage differentiation exist and should be considered when selecting cMSCs for translational studies. These results and associated methods will prove useful for future translational studies involving the canine model.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Membrana Sinovial/citologia , Adipogenia/genética , Tecido Adiposo/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Condrogênese/genética , Colágeno Tipo II/genética , Colágeno Tipo II/imunologia , Cães , Feminino , Expressão Gênica , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Especificidade de Órgãos , Osteogênese/genética , Cultura Primária de Células , Proteoglicanas/genética , Proteoglicanas/imunologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Membrana Sinovial/metabolismo , Doadores de Tecidos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...