Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 37(4): 371-382, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38386697

RESUMO

Viruses that infect bacteria, known as bacteriophages or phages, are the most prevalent entities on Earth. Their genetic diversity in nature is well documented, and members of divergent lineages can be found sharing the same ecological niche. This viral diversity can be influenced by a number of factors, including productivity, spatial structuring of the environment, and host-range trade-offs. Rapid evolution is also known to promote diversity by buffering ecological systems from extinction. There is, however, little known about the impact of coevolution on the maintenance of viral diversity within a microbial community. To address this, we developed a 4 species experimental system where two bacterial hosts, a generalist and a specialist phage, coevolved in a spatially homogenous environment over time. We observed the persistence of both viruses if the resource availability was sufficiently high. This coexistence occurred in the absence of any detectable host-range trade-offs that are costly for generalists and thus known to promote viral diversity. However, the coexistence was lost if two bacteria were not permitted to evolve alongside the phages or if two phages coevolved with a single bacterial host. Our findings indicate that a host's resistance response in mixed-species communities plays a significant role in maintaining viral diversity in the environment.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Especificidade de Hospedeiro , Bactérias/genética
2.
Proc Natl Acad Sci U S A ; 120(40): e2221507120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751555

RESUMO

Antibiotics, by definition, reduce bacterial growth rates in optimal culture conditions; however, the real-world environments bacteria inhabit see rapid growth punctuated by periods of low nutrient availability. How antibiotics mediate population decline during these periods is poorly understood. Bacteria cannot optimize for all environmental conditions because a growth-longevity tradeoff predicts faster growth results in faster population decline, and since bacteriostatic antibiotics slow growth, they should also mediate longevity. We quantify how antibiotics, their targets, and resistance mechanisms influence longevity using populations of Escherichia coli and, as the tradeoff predicts, populations are maintained for longer if they encounter ribosome-binding antibiotics doxycycline and erythromycin, a finding that is not observed using antibiotics with alternative cellular targets. This tradeoff also predicts resistance mechanisms that increase growth rates during antibiotic treatment could be detrimental during nutrient stresses, and indeed, we find resistance by ribosomal protection removes benefits to longevity provided by doxycycline. We therefore liken ribosomal protection to a "Trojan horse" because it provides protection from an antibiotic but, during nutrient stresses, it promotes the demise of the bacteria. Seeking mechanisms to support these observations, we show doxycycline promotes efficient metabolism and reduces the concentration of reactive oxygen species. Seeking generality, we sought another mechanism that affects longevity and we found the number of doxycycline targets, namely, the ribosomal RNA operons, mediates growth and longevity even without antibiotics. We conclude that slow growth, as observed during antibiotic treatment, can help bacteria overcome later periods of nutrient stress.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Doxiciclina/farmacologia , Escherichia coli , Ribossomos , Humanos
3.
Am Nat ; 201(5): 659-679, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130231

RESUMO

AbstractHost-parasite coevolution is expected to drive the evolution of genetic diversity because the traits used in arms races-namely, host range and parasite resistance-are hypothesized to trade off with traits used in resource competition. We therefore tested data for several trade-offs among 93 isolates of bacteriophage λ and 51 Escherichia coli genotypes that coevolved during a laboratory experiment. Surprisingly, we found multiple trade-ups (positive trait correlations) but little evidence of several canonical trade-offs. For example, some bacterial genotypes evaded a trade-off between phage resistance and absolute fitness, instead evolving simultaneous improvements in both traits. This was surprising because our experimental design was predicted to expose resistance-fitness trade-offs by culturing E. coli in a medium where the phage receptor, LamB, is also used for nutrient acquisition. On reflection, LamB mediates not one but many trade-offs, allowing for more complex trait interactions than just pairwise trade-offs. Here, we report that mathematical reasoning and laboratory data highlight how trade-ups should exist whenever an evolutionary system exhibits multiple interacting trade-offs. Does this mean that coevolution should not promote genetic diversity? No, quite the contrary. We deduce that whenever positive trait correlations are observed in multidimensional traits, other traits may trade off and so provide the right circumstances for diversity maintenance. Overall, this study reveals that there are predictive limits when data account only for pairwise trait correlations, and it argues that a wider range of circumstances than previously anticipated can promote genetic and species diversity.


Assuntos
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Mutação , Fenótipo , Especificidade de Hospedeiro , Bacteriófagos/genética , Evolução Biológica
4.
Nat Commun ; 13(1): 2917, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614098

RESUMO

Antibiotic resistance represents a growing medical concern where raw, clinical datasets are under-exploited as a means to track the scale of the problem. We therefore sought patterns of antibiotic resistance in the Antimicrobial Testing Leadership and Surveillance (ATLAS) database. ATLAS holds 6.5M minimal inhibitory concentrations (MICs) for 3,919 pathogen-antibiotic pairs isolated from 633k patients in 70 countries between 2004 and 2017. We show most pairs form coherent, although not stationary, timeseries whose frequencies of resistance are higher than other databases, although we identified no systematic bias towards including more resistant strains in ATLAS. We sought data anomalies whereby MICs could shift for methodological and not clinical or microbiological reasons and found artefacts in over 100 pathogen-antibiotic pairs. Using an information-optimal clustering methodology to classify pathogens into low and high antibiotic susceptibilities, we used ATLAS to predict changes in resistance. Dynamics of the latter exhibit complex patterns with MIC increases, and some decreases, whereby subpopulations' MICs can diverge. We also identify pathogens at risk of developing clinical resistance in the near future.


Assuntos
Anti-Infecciosos , Metadados , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
5.
Mol Biol Evol ; 38(9): 3847-3863, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33693929

RESUMO

To determine the dosage at which antibiotic resistance evolution is most rapid, we treated Escherichia coli in vitro, deploying the antibiotic erythromycin at dosages ranging from zero to high. Adaptation was fastest just below erythromycin's minimal inhibitory concentration (MIC) and genotype-phenotype correlations determined from whole genome sequencing revealed the molecular basis: simultaneous selection for copy number variation in three resistance mechanisms which exhibited an "inverted-U" pattern of dose-dependence, as did several insertion sequences and an integron. Many genes did not conform to this pattern, however, reflecting changes in selection as dose increased: putative media adaptation polymorphisms at zero antibiotic dosage gave way to drug target (ribosomal RNA operon) amplification at mid dosages whereas prophage-mediated drug efflux amplifications dominated at the highest dosages. All treatments exhibited E. coli increases in the copy number of efflux operons acrAB and emrE at rates that correlated with increases in population density. For strains where the inverted-U was no longer observed following the genetic manipulation of acrAB, it could be recovered by prolonging the antibiotic treatment at subMIC dosages.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Antiporters/genética , Variações do Número de Cópias de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Amplificação de Genes , Testes de Sensibilidade Microbiana
6.
PLoS Comput Biol ; 17(3): e1008817, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735173

RESUMO

Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker's yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.


Assuntos
Candida , Enterobacteriaceae , Modelos Biológicos , Saccharomyces cerevisiae , Biotecnologia , Candida/citologia , Candida/crescimento & desenvolvimento , Candida/fisiologia , Proliferação de Células/fisiologia , Biologia Computacional , Ecologia , Enterobacteriaceae/citologia , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia
7.
Proc Biol Sci ; 287(1931): 20200761, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32673559

RESUMO

Antimicrobial resistance frequently carries a fitness cost to a pathogen, measured as a reduction in growth rate compared to the sensitive wild-type, in the absence of antibiotics. Existing empirical evidence points to the following relationship between cost of resistance and virulence. If a resistant pathogen suffers a fitness cost in terms of reduced growth rate it commonly has lower virulence compared to the sensitive wild-type. If this cost is absent so is the reduction in virulence. Here we show, using experimental evolution of drug resistance in the fungal human pathogen Candida glabrata, that reduced growth rate of resistant strains need not result in reduced virulence. Phenotypically heterogeneous populations were evolved in parallel containing highly resistant sub-population small colony variants (SCVs) alongside sensitive sub-populations. Despite their low growth rate in the absence of an antifungal drug, the SCVs did not suffer a marked alteration in virulence compared with the wild-type ancestral strain, or their co-isolated sensitive strains. This contrasts with classical theory that assumes growth rate to positively correlate with virulence. Our work thus highlights the complexity of the relationship between resistance, basic life-history traits and virulence.


Assuntos
Candida glabrata , Farmacorresistência Fúngica , Antifúngicos , Proteínas Fúngicas , Humanos , Testes de Sensibilidade Microbiana , Fenótipo
8.
J R Soc Interface ; 17(166): 20190776, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453982

RESUMO

Microbes occupy almost every niche within and on their human hosts. Whether colonizing the gut, mouth or bloodstream, microorganisms face temporal fluctuations in resources and stressors within their niche but we still know little of how environmental fluctuations mediate certain microbial phenotypes, notably antimicrobial-resistant ones. For instance, do rapid or slow fluctuations in nutrient and antimicrobial concentrations select for, or against, resistance? We tackle this question using an ecological approach by studying the dynamics of a synthetic and pathogenic microbial community containing two species, one sensitive and the other resistant to an antibiotic drug where the community is exposed to different rates of environmental fluctuation. We provide mathematical models, supported by experimental data, to demonstrate that simple community outcomes, such as competitive exclusion, can shift to coexistence and ecosystem bistability as fluctuation rates vary. Theory gives mechanistic insight into how these dynamical regimes are related. Importantly, our approach highlights a fundamental difference between resistance in single-species populations, the context in which it is usually assayed, and that in communities. While fast environmental changes are known to select against resistance in single-species populations, here we show that they can promote the resistant species in mixed-species communities. Our theoretical observations are verified empirically using a two-species Candida community.


Assuntos
Antibacterianos , Ecossistema , Antibacterianos/farmacologia , Humanos , Modelos Teóricos , Dinâmica Populacional
9.
Nat Ecol Evol ; 2(11): 1824, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30237543

RESUMO

In the version of this Article originally published, the following sentence was missing from the Acknowledgements: "R.E.B. is an EPSRC Healthcare Technologies Impact Fellow EP/N033671/1; I.G. is funded by ERC Consolidator grant 647292 MathModExp; A.J.P.B., N.A.R.G. and A.T. were funded by BBSRC grant BB/F00513X/1; K.H., I.G., S.N. and E.C. were funded by BBSRC grant BB/F005210/2." This text has now been added.

10.
Nat Ecol Evol ; 2(8): 1312-1320, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988162

RESUMO

Microbes rarely exist in isolation, rather, they form intricate multi-species communities that colonize our bodies and inserted medical devices. However, the efficacy of antimicrobials is measured in clinical laboratories exclusively using microbial monocultures. Here, to determine how multi-species interactions mediate selection for resistance during antibiotic treatment, particularly following drug withdrawal, we study a laboratory community consisting of two microbial pathogens. Single-species dose responses are a poor predictor of community dynamics during treatment so, to better understand those dynamics, we introduce the concept of a dose-response mosaic, a multi-dimensional map that indicates how species' abundance is affected by changes in abiotic conditions. We study the dose-response mosaic of a two-species community with a 'Gene × Gene × Environment × Environment' ecological interaction whereby Candida glabrata, which is resistant to the antifungal drug fluconazole, competes for survival with Candida albicans, which is susceptible to fluconazole. The mosaic comprises several zones that delineate abiotic conditions where each species dominates. Zones are separated by loci of bifurcations and tipping points that identify what environmental changes can trigger the loss of either species. Observations of the laboratory communities corroborated theory, showing that changes in both antibiotic concentration and nutrient availability can push populations beyond tipping points, thus creating irreversible shifts in community composition from drug-sensitive to drug-resistant species. This has an important consequence: resistant species can increase in frequency even if an antibiotic is withdrawn because, unwittingly, a tipping point was passed during treatment.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Farmacorresistência Fúngica , Fluconazol/farmacologia , Interações Microbianas , Candida albicans/crescimento & desenvolvimento , Candida glabrata/crescimento & desenvolvimento , Técnicas de Cocultura , Relação Dose-Resposta a Droga
11.
PLoS Biol ; 16(4): e2004356, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708964

RESUMO

The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction-irrespective of whether combinations were compared at the same level of inhibition or not-while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution.


Assuntos
Adaptação Fisiológica , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Teorema de Bayes , Evolução Biológica , Antagonismo de Drogas , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
13.
Nat Ecol Evol ; 1(3): 50, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28812723

RESUMO

Evolutionary trajectories are constrained by trade-offs when mutations that benefit one life history trait incur fitness costs in other traits. As resistance to tetracycline antibiotics by increased efflux can be associated with an increase in length of the Escherichia coli chromosome of 10% or more, we sought costs of resistance associated with doxycycline. However, it was difficult to identify any because the growth rate (r), carrying capacity (K) and drug efflux rate of E. coli increased during evolutionary experiments where the species was exposed to doxycycline. Moreover, these improvements remained following drug withdrawal. We sought mechanisms for this seemingly unconstrained adaptation, particularly as these traits ought to trade-off according to rK selection theory. Using prokaryote and eukaryote microorganisms, including clinical pathogens, we show that r and K can trade-off, but need not, because of 'rK trade-ups'. r and K trade-off only in sufficiently carbon-rich environments where growth is inefficient. We then used E. coli ribosomal RNA (rRNA) knockouts to determine specific mutations, namely changes in rRNA operon (rrn) copy number, than can simultaneously maximize r and K. The optimal genome has fewer operons, and therefore fewer functional ribosomes, than the ancestral strain. It is, therefore, unsurprising for r-adaptation in the presence of a ribosome-inhibiting antibiotic, doxycycline, to also increase population size. We found two costs for this improvement: an elongated lag phase and the loss of stress protection genes.

14.
Mol Biol Evol ; 34(9): 2229-2244, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541480

RESUMO

When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160 independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects differed to those previously reported for other bacterial species, suggesting interspecific differences in the underlying evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ, which mediate aminoglycoside sensitivity in ß-lactam-adapted populations, or the two-component regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy.


Assuntos
Farmacorresistência Bacteriana/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Bactérias/genética , Evolução Biológica , Evolução Molecular , Genoma Bacteriano/genética , Genômica/métodos , Testes de Sensibilidade Microbiana , Mutação
15.
Mol Biol Evol ; 34(4): 802-817, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096304

RESUMO

Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as "antibiotic cycling" and "antibiotic mixing." However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to "cycle" between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic. Key words: : antibiotic cycling, antibiotic mixing, optimal control, stochastic models.


Assuntos
Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Evolução Biológica , Evolução Molecular , Hospitais , Humanos , Modelos Biológicos , Modelos Teóricos , Resultado do Tratamento
16.
PLoS Comput Biol ; 12(11): e1005216, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898662

RESUMO

Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Hormese/fisiologia , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Quinases/metabolismo , Animais , Simulação por Computador , Humanos , Modelos Químicos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/efeitos dos fármacos
17.
Evol Appl ; 8(10): 945-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26640520

RESUMO

Antibiotic resistance is a growing concern to public health. New treatment strategies may alleviate the situation by slowing down the evolution of resistance. Here, we evaluated sequential treatment protocols using two fully independent laboratory-controlled evolution experiments with the human pathogen Pseudomonas aeruginosa PA14 and two pairs of clinically relevant antibiotics (doripenem/ciprofloxacin and cefsulodin/gentamicin). Our results consistently show that the sequential application of two antibiotics decelerates resistance evolution relative to monotherapy. Sequential treatment enhanced population extinction although we applied antibiotics at sublethal dosage. In both experiments, we identified an order effect of the antibiotics used in the sequential protocol, leading to significant variation in the long-term efficacy of the tested protocols. These variations appear to be caused by asymmetric evolutionary constraints, whereby adaptation to one drug slowed down adaptation to the other drug, but not vice versa. An understanding of such asymmetric constraints may help future development of evolutionary robust treatments against infectious disease.

18.
PLoS Biol ; 13(4): e1002104, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25853342

RESUMO

We need to find ways of enhancing the potency of existing antibiotics, and, with this in mind, we begin with an unusual question: how low can antibiotic dosages be and yet bacterial clearance still be observed? Seeking to optimise the simultaneous use of two antibiotics, we use the minimal dose at which clearance is observed in an in vitro experimental model of antibiotic treatment as a criterion to distinguish the best and worst treatments of a bacterium, Escherichia coli. Our aim is to compare a combination treatment consisting of two synergistic antibiotics to so-called sequential treatments in which the choice of antibiotic to administer can change with each round of treatment. Using mathematical predictions validated by the E. coli treatment model, we show that clearance of the bacterium can be achieved using sequential treatments at antibiotic dosages so low that the equivalent two-drug combination treatments are ineffective. Seeking to treat the bacterium in testing circumstances, we purposefully study an E. coli strain that has a multidrug pump encoded in its chromosome that effluxes both antibiotics. Genomic amplifications that increase the number of pumps expressed per cell can cause the failure of high-dose combination treatments, yet, as we show, sequentially treated populations can still collapse. However, dual resistance due to the pump means that the antibiotics must be carefully deployed and not all sublethal sequential treatments succeed. A screen of 136 96-h-long sequential treatments determined five of these that could clear the bacterium at sublethal dosages in all replicate populations, even though none had done so by 24 h. These successes can be attributed to a collateral sensitivity whereby cross-resistance due to the duplicated pump proves insufficient to stop a reduction in E. coli growth rate following drug exchanges, a reduction that proves large enough for appropriately chosen drug switches to clear the bacterium.


Assuntos
Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética
19.
Nat Commun ; 6: 6278, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25695944

RESUMO

Trade-offs are thought to arise from inevitable, biophysical limitations that prevent organisms from optimizing multiple traits simultaneously. A leading explanation for biodiversity maintenance is a theory that if the shape, or geometry, of a trade-off is right, then multiple species can coexist. Testing this theory, however, is difficult as trait data is usually too noisy to discern shape, or trade-offs necessary for the theory are not observed in vivo. To address this, we infer geometry directly from the biophysical mechanisms that cause trade-offs, deriving the geometry of two by studying nutrient uptake and metabolic properties common to all living cells. To test for their presence in vivo we isolated Escherichia coli mutants that vary in a nutrient transporter, LamB, and found evidence for both trade-offs. Consistent with data, population genetics models incorporating the trade-offs successfully predict the co-maintenance of three distinct genetic lineages, demonstrating that trade-off geometry can be deduced from fundamental principles of living cells and used to predict stable genetic polymorphisms.


Assuntos
Biodiversidade , Fenômenos Biofísicos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Redes e Vias Metabólicas , Modelos Biológicos , Mutação/genética , Dinâmica não Linear , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Trissacarídeos/farmacologia
20.
PLoS Biol ; 12(8): e1001928, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25136970

RESUMO

Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.


Assuntos
Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Adaptação Fisiológica/efeitos dos fármacos , Genes Bacterianos , Mutação/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Seleção Genética/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...