Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biofabrication ; 15(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473749

RESUMO

In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.


Assuntos
Bioimpressão , Hidrogéis , Hidrogéis/química , Desenvolvimento Muscular/genética , Microfluídica , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
FEBS J ; 290(18): 4440-4464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166453

RESUMO

Astrocytes are essential players in development and functions, being particularly relevant as regulators of brain energy metabolism, ionic homeostasis and synaptic transmission. They are also the major source of l-serine in the brain, which is synthesized from the glycolytic intermediate 3-phosphoglycerate through the phosphorylated pathway. l-Serine is the precursor of the two main co-agonists of the N-methyl-d-aspartate receptor, glycine and d-serine. Strikingly, dysfunctions in both l- and d-serine metabolism are associated with neurological and psychiatric disorders. Here, we exploited a differentiation protocol, based on the generation of human mature astrocytes from neural stem cells, and investigated the modification of the proteomic and metabolomic profile during the differentiation process. We show that differentiated astrocytes are more similar to mature rather than to reactive ones, and that axogenesis and pyrimidine metabolism increase up to 30 days along with the folate cycle and sphingolipid metabolism. Consistent with the proliferation and cellular maturation processes that are taking place, also the intracellular levels of l-serine, glycine, threonine, l- and d-aspartate (which level is unexpectedly higher than that of d-serine) show the same biosynthetic time course. A significant utilization of l-serine from the medium is apparent while glycine is first consumed and then released with a peak at 30 days, parallel to its intracellular level. These results underline how metabolism changes during astrocyte differentiation, highlight that d-serine synthesis is restricted in differentiated astrocytes and provide a valuable model for developing potential novel therapeutic approaches to address brain diseases, especially the ones related to serine metabolism alterations.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Humanos , Astrócitos/metabolismo , Serina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Diferenciação Celular , Receptores de N-Metil-D-Aspartato/genética , Glicina/farmacologia , Glicina/metabolismo
3.
Cells ; 12(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899835

RESUMO

AL amyloidosis is caused by the misfolding of immunoglobulin light chains leading to an impaired function of tissues and organs in which they accumulate. Due to the paucity of -omics profiles from undissected samples, few studies have addressed amyloid-related damage system wide. To fill this gap, we evaluated proteome changes in the abdominal subcutaneous adipose tissue of patients affected by the AL isotypes κ and λ. Through our retrospective analysis based on graph theory, we have herein deduced new insights representing a step forward from the pioneering proteomic investigations previously published by our group. ECM/cytoskeleton, oxidative stress and proteostasis were confirmed as leading processes. In this scenario, some proteins, including glutathione peroxidase 1 (GPX1), tubulins and the TRiC complex, were classified as biologically and topologically relevant. These and other results overlap with those already reported for other amyloidoses, supporting the hypothesis that amyloidogenic proteins could induce similar mechanisms independently of the main fibril precursor and of the target tissues/organs. Of course, further studies based on larger patient cohorts and different tissues/organs will be essential, which would be a key point that would allow for a more robust selection of the main molecular players and a more accurate correlation with clinical aspects.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Proteômica/métodos , Estudos Retrospectivos , Biópsia , Gordura Subcutânea/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076927

RESUMO

Before entering human clinical studies to evaluate their safety and effectiveness, new drugs and novel medical treatments are subject to extensive animal testing that are expensive and time-consuming. By contrast, advanced technologies enable the development of animal-free models that allow the efficacy of innovative therapies to be studied without sacrificing animals, while providing helpful information and details. We report on the powerful combination of 3D bioprinting (3DB) and photo-thermal therapy (PTT) applications. To this end, we realize a 3DB construct consisting of glioblastoma U87-MG cells in a 3D geometry, incorporating biomimetic keratin-coated gold nanoparticles (Ker-AuNPs) as a photo-thermal agent. The resulting plasmonic 3DB structures exhibit a homogeneous cell distribution throughout the entire volume while promoting the localization of Ker-AuNPs within the cells. A 3D immunofluorescence assay and transmission electron microscopy (TEM) confirm the uniform distribution of fluorescent-labeled Ker-AuNPs in the volume and their capability to enter the cells. Laser-assisted (λ = 532 nm) PTT experiments demonstrate the extraordinary ability of Ker-AuNPs to generate heating, producing the highest temperature rise of about 16 °C in less than 2 min.


Assuntos
Glioblastoma , Hipertermia Induzida , Nanopartículas Metálicas , Terapia Fototérmica , Materiais Biomiméticos , Glioblastoma/terapia , Ouro/química , Humanos , Queratinas/química , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos
5.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139463

RESUMO

Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia.


Assuntos
Ácido Abscísico , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Abscísico/metabolismo , Animais , Glicemia/metabolismo , Hipóxia Celular , Hormônios/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , NADP/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Acoplados a Proteínas G , Sirtuína 1/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887248

RESUMO

The cellular heterogeneity of the tumor environment of breast cancer (BC) is extremely complex and includes different actors such as neoplastic, stromal, and immunosuppressive cells, which contribute to the chemical and mechanical modification of the environment surrounding the tumor-exasperating immune-escaping mechanisms. In addition to molecular signals that make the tumor microenvironment (TME) unacceptable for the penetrance of the immune system, the physical properties of tumoral extracellular matrix (tECM) also have carved out a fundamental role in the processes of the protection of the tumor niche. Tumor-associated macrophages (TAMs), with an M2 immunosuppressive phenotype, are important determinants for the establishment of a tumor phenotype excluded from T cells. NF-κB transcription factors orchestrate innate immunity and represent the common thread between inflammation and cancer. Many studies have focused on canonical activation of NF-κB; however, activation of non-canonical signaling predicts poor survival and resistance to therapy. In this scenario, we demonstrated the existence of an unusual association of NF-κB components in TAMs that determines the deposition of HSPG2 that affects the stiffness of tECM. These results highlight a new mechanism counterbalanced between physical factors and a new perspective of mechano-pathology to be targeted to counteract immune evasion in BC.


Assuntos
NF-kappa B , Neoplasias , Humanos , Macrófagos , Neoplasias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor
7.
Nutrients ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807868

RESUMO

The evaluation of probiotics' efficacy in treating irritable bowel syndrome is supported by an increasing number of clinical studies based on a heterogeneous approach of products tested and the patient cohort involved. Although the role of gut microbiota dysbiosis in IBS pathogenesis and the beneficial contribution of probiotics were demonstrated, a tool to discriminate symptom-specific strains and a personalised medicine protocol are still lacking. Thus, this study employs, for the first time, a method that combines the preferred reporting items for systematic reviews and meta-analysis and multi-criteria decision analysis methods in a structured decision-making tool to analyze the efficacy of probiotic mix, in order to identify the most effective formulation and to discriminate which probiotics are more efficient in treating different symptoms. The PRISMA methodology resulted in a qualitative and quantitative analysis of 104 clinical studies from 2011 to 2021, revealing a prevalence of Lactobacillus rhamnosus, Lactobacillus acidophilus, and Bifidobacterium animalis subsp. lactis. MCDA analysis showed that formulations based on Lactobacillus rhamnosus and Lactobacillus acidophilus have the highest efficacy, especially on quality of life, bloating, and abdominal pain. This methodological approach could become more specific by modelling clinical studies according to the age and gender of patients and probiotic strain.


Assuntos
Bifidobacterium animalis , Síndrome do Intestino Irritável , Lacticaseibacillus rhamnosus , Probióticos , Técnicas de Apoio para a Decisão , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Lactobacillus acidophilus , Probióticos/uso terapêutico , Qualidade de Vida
8.
Cardiovasc Res ; 118(8): 1872-1884, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34254111

RESUMO

Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene-editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal, and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Animais , Cardiomiopatias/genética , Cardiomiopatias/terapia , Distrofina/genética , Distrofina/metabolismo , Coração , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Muscular de Duchenne/genética
9.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796900

RESUMO

Large-animal models for Duchenne muscular dystrophy (DMD) are crucial for the evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) exhibit molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in an additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance to human disease mechanisms. Importantly, DMDY/- pigs displayed progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction, at 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Cardiomiopatias/patologia , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Volume Sistólico , Suínos , Função Ventricular Esquerda
10.
Front Bioeng Biotechnol ; 9: 732130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604190

RESUMO

In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.

11.
Stem Cell Res ; 55: 102487, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34419748

RESUMO

Emery-Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the EMD gene coding for a nuclear envelope protein emerin. We generated and characterized induced pluripotent stem cells (iPSCs) from two EDMD1 patients bearing a mutation c.del153C and from one healthy donor. That mutation leads to generation of premature STOP codon. Established iPSCs are very valuable tool for disease pathogenesis investigation and for the development of new therapeutic methods after differentiation to cardiac or muscle cells. Obtained iPSCs show the proper morphology, pluripotency markers expression, normal karyotype and potential to differentiate into three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Emery-Dreifuss , Diferenciação Celular , Células Cultivadas , Células Clonais , Humanos , Distrofia Muscular de Emery-Dreifuss/genética , Mutação
12.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070750

RESUMO

The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Cultura de Células , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Hidrogéis/química , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mecanotransdução Celular , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/imunologia , Fenótipo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Reologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
13.
Biomolecules ; 11(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917623

RESUMO

The Cdkn2a locus is one of the most studied tumor suppressor loci in the context of several cancer types. However, in the last years, its expression has also been linked to terminal differentiation and the activation of the senescence program in different cellular subtypes. Knock-out (KO) of the entire locus enhances the capability of stem cells to proliferate in some tissues and respond to severe physiological and non-physiological damages in different organs, including the heart. Emery-Dreifuss muscular dystrophy (EDMD) is characterized by severe contractures and muscle loss at the level of skeletal muscles of the elbows, ankles and neck, and by dilated cardiomyopathy. We have recently demonstrated, using the LMNA Δ8-11 murine model of Emery-Dreifuss muscular dystrophy (EDMD), that dystrophic muscle stem cells prematurely express non-lineage-specific genes early on during postnatal growth, leading to rapid exhaustion of the muscle stem cell pool. Knock-out of the Cdkn2a locus in EDMD dystrophic mice partially restores muscle stem cell properties. In the present study, we describe the cardiac phenotype of the LMNA Δ8-11 mouse model and functionally characterize the effects of KO of the Cdkn2a locus on heart functions and life expectancy.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Animais , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Modelos Animais de Doenças , Loci Gênicos , Genótipo , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Longevidade , Camundongos , Camundongos Knockout , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/mortalidade , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Células-Tronco/citologia , Células-Tronco/metabolismo , Taxa de Sobrevida
14.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33434889

RESUMO

Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability to mediate intercellular communication. This feature has been explored and is under constant investigation by researchers, who have demonstrated the important role of EVs in several research fields ranging from oncology to immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limitations to overcome before clinical application, including the inability to confine the EVs to strategically defined sites of interest to avoid side effects. In this study, for the first time, EV application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of human umbilical vein endothelial cell-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bioadditives for the formulation of advanced bioinks. Afterin vivosubcutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculaturein situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favour the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischaemic tissues, which represent the fundamental substrate for advanced regenerative medicine applications.


Assuntos
Bioimpressão , Vesículas Extracelulares , Impressão Tridimensional , Comunicação Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Medicina Regenerativa
15.
Cells ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585911

RESUMO

The recent advances, offered by cell therapy in the regenerative medicine field, offer a revolutionary potential for the development of innovative cures to restore compromised physiological functions or organs. Adult myogenic precursors, such as myoblasts or satellite cells, possess a marked regenerative capacity, but the exploitation of this potential still encounters significant challenges in clinical application, due to low rate of proliferation in vitro, as well as a reduced self-renewal capacity. In this scenario, induced pluripotent stem cells (iPSCs) can offer not only an inexhaustible source of cells for regenerative therapeutic approaches, but also a valuable alternative for in vitro modeling of patient-specific diseases. In this study we established a reliable protocol to induce the myogenic differentiation of iPSCs, generated from pericytes and fibroblasts, exploiting skeletal muscle-derived extracellular vesicles (EVs), in combination with chemically defined factors. This genetic integration-free approach generates functional skeletal myotubes maintaining the engraftment ability in vivo. Our results demonstrate evidence that EVs can act as biological "shuttles" to deliver specific bioactive molecules for a successful transgene-free differentiation offering new opportunities for disease modeling and regenerative approaches.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Animais , Diferenciação Celular , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Adulto Jovem
16.
J Clin Invest ; 130(5): 2408-2421, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999646

RESUMO

Lamin A is a component of the inner nuclear membrane that, together with epigenetic factors, organizes the genome in higher order structures required for transcriptional control. Mutations in the lamin A/C gene cause several diseases belonging to the class of laminopathies, including muscular dystrophies. Nevertheless, molecular mechanisms involved in the pathogenesis of lamin A-dependent dystrophies are still largely unknown. The polycomb group (PcG) of proteins are epigenetic repressors and lamin A interactors, primarily involved in the maintenance of cell identity. Using a murine model of Emery-Dreifuss muscular dystrophy (EDMD), we show here that lamin A loss deregulated PcG positioning in muscle satellite stem cells, leading to derepression of non-muscle-specific genes and p16INK4a, a senescence driver encoded in the Cdkn2a locus. This aberrant transcriptional program caused impairment in self-renewal, loss of cell identity, and premature exhaustion of the quiescent satellite cell pool. Genetic ablation of the Cdkn2a locus restored muscle stem cell properties in lamin A/C-null dystrophic mice. Our findings establish a direct link between lamin A and PcG epigenetic silencing and indicate that lamin A-dependent muscular dystrophy can be ascribed to intrinsic epigenetic dysfunctions of muscle stem cells.


Assuntos
Epigênese Genética , Lamina Tipo A/biossíntese , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Lamina Tipo A/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/genética
18.
Sci Rep ; 8(1): 13532, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201959

RESUMO

The myocardium behaves like a sophisticated orchestra that expresses its true potential only if each member performs the correct task harmonically. Recapitulating its complexity within engineered 3D functional constructs with tailored biological and mechanical properties, is one of the current scientific priorities in the field of regenerative medicine and tissue engineering. In this study, driven by the necessity of fabricating advanced model of cardiac tissue, we present an innovative approach consisting of heterogeneous, multi-cellular constructs composed of Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). Cells were encapsulated within hydrogel strands containing alginate and PEG-Fibrinogen (PF) and extruded through a custom microfluidic printing head (MPH) that allows to precisely tailor their 3D spatial deposition, guaranteeing a high printing fidelity and resolution. We obtained a 3D cardiac tissue compose of iPSC-derived CMs with a high orientation index imposed by the different defined geometries and blood vessel-like shapes generated by HUVECs which, as demonstrated by in vivo grafting, better support the integration of the engineered cardiac tissue with host's vasculature.


Assuntos
Bioimpressão/métodos , Bioprótese , Impressão Tridimensional , Engenharia Tecidual/métodos , Alginatos/química , Animais , Bioimpressão/instrumentação , Procedimentos Cirúrgicos Cardíacos , Doenças Cardiovasculares/cirurgia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Vasos Coronários/fisiologia , Fibrinogênio/química , Fibroblastos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Cultura Primária de Células , Implantação de Prótese , Pele/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
19.
Cell Death Dis ; 9(2): 108, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371598

RESUMO

Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics - hereditable changes of chromatin that do not alter the DNA sequence itself - is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs.


Assuntos
Carbamatos/farmacologia , Fibroblastos/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Endotélio/patologia , Epitélio/efeitos dos fármacos , Epitélio/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia
20.
Cardiovasc Res ; 113(5): 453-463, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158647

RESUMO

AIMS: Antisense long noncoding RNAs (ncRNAs) are transcripts emerging from the opposite strand of a coding-RNA region and their role in heart failure (HF) is largely unknown. Additionally, HF and Alzheimer's disease (AD) share several non-genetic effectors and risk factors. We investigated the regulation of the ß-secretase-1 (BACE1) gene and of its antisense transcript BACE1-AS in ischaemic HF. METHODS AND RESULTS: BACE1 and BACE1-AS expression was measured in left ventricle biopsies from 18 patients affected by non-end stage ischaemic HF and 17 matched controls. The levels of both transcripts were increased in HF patients. Likewise, both transcripts increased also in a mouse model of ischaemic HF, and their expression was directly correlated. BACE1-AS was expressed by all cardiac cell types and BACE1-AS up- or down-modulation in cultured cardiomyocytes and endothelial cells induced a concordant regulation of the cognate BACE1 transcript. Interestingly, BACE1 increase also induced the intracellular accumulation of its product ß-amyloid. In keeping with these findings, higher BACE1 protein and ß-amyloid peptide levels were also observed in HF. Moreover, increased ß-amyloid 1-40 was also found in the plasma of HF patients. Transcriptomic changes of BACE1-AS overexpressing and ß-amyloid 1-40 treated cells were largely overlapping and indicated changes of relevant biological process such as 'cell cycle and proliferation', 'apoptosis', and 'DNA repair' as well as 'TGFß-, TNFα-, p38-, EGFR-signalling', suggesting a potential maladaptive role of the BACE1-AS/BACE1/ß-amyloid axis. Accordingly, the administration of ß-amyloid peptides decreased the cell viability in endothelial cells and in both human IPS-derived and mouse cardiomyocytes. Moreover, both ß-amyloid treatment and BACE1-AS overexpression increased endothelial cell apoptosis, and this effect was prevented by BACE1 silencing. CONCLUSION: Given the neurotoxic role of ß-amyloid in AD, dysregulation of the BACE1/BACE1-AS/ß-amyloid axis might be relevant in HF pathogenesis, further implicating ncRNAs in the complex scenario of proteotoxicity in cardiac dysfunction.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Células Endoteliais/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/genética , Animais , Apoptose , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Estudos de Casos e Controles , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Interferência de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...