Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 107(3): 243-252, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068009

RESUMO

NEW FINDINGS: What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a lower lung transfer factor for carbon monoxide than those without (PFO- )? What is the main finding and its importance? We found a lower rate constant for carbon monoxide uptake in PFO+ compared with PFO- women, which was physiologically relevant (≥0.5 z-score difference), but not for PFO+ versus PFO- men. This suggests that factors independent of the PFO are responsible for our findings, possibly inherent structural differences in the lung. ABSTRACT: The transfer factor of the lung for carbon monoxide (TLCO ) measure assumes that all cardiac output flows through the pulmonary circuit. However, right-to-left blood flow through a shunt can result in a lower transfer factor than predicted. A patent foramen ovale (PFO) is a potential source of right-to-left shunt that is present in ∼35% of the population, but the effect of PFO on TLCO is unknown. We sought to determine the effect of PFO on the TLCO . We conducted a retrospective analysis of TLCO data from 239 (101 women) participants. Anthropometrics and lung function, including spirometry, plethysmography and TLCO , were compiled from our previously published work. Women, but not men, with a PFO had a significantly lower TLCO and rate constant for carbon monoxide uptake (KCO ) (percentage of predicted and z-score) than women without a PFO. Women and men with a PFO had normal alveolar volumes that did not differ from those without a PFO. Correcting the data for haemoglobin in a subset of subjects did not change the results (n = 58; 25 women). The lower KCO in women with versus without a PFO was physiologically relevant (≥0.5 z-score difference). There was no effect of PFO in men. This suggests that factors independent of the PFO are responsible for our findings, possibly inherent structural differences in the lung.


Assuntos
Monóxido de Carbono , Forame Oval Patente , Feminino , Humanos , Pulmão , Masculino , Estudos Retrospectivos , Fator de Transferência
2.
Exp Physiol ; 107(2): 122-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907608

RESUMO

NEW FINDINGS: What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 h of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This suggests hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary oedema (HAPE) is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia per se is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 h of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response.


Assuntos
Doença da Altitude , Forame Oval Patente , Hipertensão Pulmonar , Altitude , Feminino , Humanos , Hipóxia
3.
Exp Physiol ; 105(9): 1648-1659, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32627890

RESUMO

NEW FINDINGS: What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a larger alveolar-to-arterial difference in PO2 ( A-aDO2 ) than those without (PFO- ) and/or an exaggerated increase in pulmonary artery systolic pressure (PASP) in response to hypoxia? What is the main finding and its importance? PFO+ had a greater A-aDO2 while breathing air, 16% and 14% O2 , but not 12% or 10% O2 . PASP increased equally in hypoxia between PFO+ and PFO- . These data suggest that PFO+ may not have an exaggerated acute increase in PASP in response to hypoxia. ABSTRACT: Patent foramen ovale (PFO) is present in 30-40% of the population and is a potential source of right-to-left shunt. Accordingly, those with a PFO (PFO+ ) may have a larger alveolar-to-arterial difference in PO2 ( A-aDO2 ) than those without (PFO- ) in normoxia and with mild hypoxia. Likewise, PFO is associated with high-altitude pulmonary oedema, a condition known to have an exaggerated pulmonary pressure response to hypoxia. Thus, PFO+ may also have exaggerated pulmonary pressure increases in response to hypoxia. Therefore, the purposes of the present study were to systematically determine whether or not: (1) the A-aDO2 was greater in PFO+ than in PFO- in normoxia and mild to severe hypoxia and (2) the increase in pulmonary artery systolic pressure (PASP) in response to hypoxia was greater in PFO+ than in PFO- . We measured arterial blood gases and PASP via ultrasound in healthy PFO+ (n = 15) and PFO- (n = 15) humans breathing air and 30 min after breathing four levels of hypoxia (16%, 14%, 12%, 10% O2 , randomized and balanced order) at rest. The A-aDO2 was significantly greater in PFO+ compared to PFO- while breathing air (2.1 ± 0.7 vs. 0.4 ± 0.3 Torr), 16% O2 (1.8 ± 1.2 vs. 0.7 ± 0.8 Torr) and 14% O2 (2.3 ± 1.2 vs. 0.7 ± 0.6 Torr), but not 12% or 10% O2 . We found no effect of PFO on PASP at any level of hypoxia. We conclude that PFO influences pulmonary gas exchange efficiency with mild hypoxia, but not the acute increase in PASP in response to hypoxia.


Assuntos
Forame Oval Patente/fisiopatologia , Hipóxia/fisiopatologia , Troca Gasosa Pulmonar , Transtornos Respiratórios/fisiopatologia , Adulto , Pressão Arterial , Feminino , Humanos , Masculino , Artéria Pulmonar , Adulto Jovem
4.
J Appl Physiol (1985) ; 124(5): 1363-1376, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357511

RESUMO

Blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, QIPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in QIPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (PB) or represents an actual reduction in QIPAVA. To this end, QIPAVA, pulmonary artery systolic pressure (PASP), cardiac output (QT), and the alveolar-to-arterial oxygen difference (AaDO2) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, PB = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, PB = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, PB = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, PB = 410 mmHg; n = 7). We hypothesized QIPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/QT) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.

6.
Exp Physiol ; 101(8): 1128-42, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27339093

RESUMO

What is the central question of this study? Do individuals with chronic obstructive pulmonary disease have blood flow through intrapulmonary arteriovenous anastomoses at rest or during exercise? What is the main finding and its importance? Individuals with chronic obstructive pulmonary disease have a greater prevalence of blood flow through intrapulmonary arteriovenous anastomoses at rest than age-matched control subjects. Given that the intrapulmonary arteriovenous anastomoses are large enough to permit venous emboli to pass into the arterial circulation, patients with chronic obstructive pulmonary disease and an elevated risk of thrombus formation may be at risk of intrapulmonary arteriovenous anastomosis-facilitated embolic injury (e.g. stroke or transient ischaemic attack). The pulmonary capillaries prevent stroke by filtering venous emboli from the circulation. Intrapulmonary arteriovenous anastomoses are large-diameter (≥50 µm) vascular connections in the lung that may compromise the integrity of the pulmonary capillary filter and have recently been linked to cryptogenic stroke and transient ischaemic attack. Prothrombotic populations, such as individuals with chronic obstructive pulmonary disease (COPD), may be at increased risk of stroke and transient ischaemic attack facilitated by intrapulmonary arteriovenous anastomoses, but the prevalence and degree of blood flow through intrapulmonary arteriovenous anastomoses in this population has not been fully examined and compared with age-matched healthy control subjects. We used saline contrast echocardiography to assess blood flow through intrapulmonary arteriovenous anastomoses at rest (n = 29 COPD and 19 control subjects) and during exercise (n = 10 COPD and 10 control subjects) in subjects with COPD and age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses was detected in 23% of subjects with COPD at rest and was significantly higher compared with age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses at rest was reduced or eliminated in subjects with COPD after breathing hyperoxic gas. Sixty per cent of subjects with COPD who did not have blood flow through the intrapulmonary arteriovenous anastomoses at rest had blood flow through them during exercise. The combination of blood flow through intrapulmonary arteriovenous anastomoses and potential for thrombus formation in individuals with COPD may permit venous emboli to pass into the arterial circulation and cause stroke and transient ischaemic attack. Breathing supplemental oxygen may reduce this risk in COPD. The link between blood flow through intrapulmonary arteriovenous anastomoses, stroke and transient ischaemic attack is worthy of future investigation in COPD and other populations.


Assuntos
Anastomose Arteriovenosa/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/metabolismo , Artérias/fisiopatologia , Anastomose Arteriovenosa/metabolismo , Estudos de Casos e Controles , Ecocardiografia/métodos , Exercício Físico/fisiologia , Teste de Esforço/métodos , Feminino , Humanos , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Circulação Pulmonar/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Respiração , Descanso/fisiologia , Acidente Vascular Cerebral/metabolismo
7.
J Physiol ; 594(17): 4981-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27062157

RESUMO

KEY POINTS: The mechanism(s) that regulate hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) are currently unknown. Our previous work has demonstrated that the mechanism of hypoxia-induced QIPAVA is not simply increased cardiac output, pulmonary artery systolic pressure or sympathetic nervous system activity and, instead, it may be a result of hypoxaemia directly. To determine whether it is reduced arterial PO2 (PaO2) or O2 content (CaO2) that causes hypoxia-induced QIPAVA , individuals were instructed to breathe room air and three levels of hypoxic gas at rest before (control) and after CaO2 was reduced by 10% by lowering the haemoglobin concentration (isovolaemic haemodilution; Low [Hb]). QIPAVA , assessed by transthoracic saline contrast echocardiography, significantly increased as PaO2 decreased and, despite reduced CaO2 (via isovolaemic haemodilution), was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA , although where and how this is detected remains unknown. ABSTRACT: Alveolar hypoxia causes increased blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) in healthy humans at rest. However, it is unknown whether the stimulus regulating hypoxia-induced QIPAVA is decreased arterial PO2 (PaO2) or O2 content (CaO2). CaO2 is known to regulate blood flow in the systemic circulation and it is suggested that IPAVA may be regulated similar to the systemic vasculature. Thus, we hypothesized that reduced CaO2 would be the stimulus for hypoxia-induced QIPAVA . Blood volume (BV) was measured using the optimized carbon monoxide rebreathing method in 10 individuals. Less than 5 days later, subjects breathed room air, as well as 18%, 14% and 12.5% O2 , for 30 min each, in a randomized order, before (CON) and after isovolaemic haemodilution (10% of BV withdrawn and replaced with an equal volume of 5% human serum albumin-saline mixture) to reduce [Hb] (Low [Hb]). PaO2 was measured at the end of each condition and QIPAVA was assessed using transthoracic saline contrast echocardiography. [Hb] was reduced from 14.2 ± 0.8 to 12.8 ± 0.7 g dl(-1) (10 ± 2% reduction) from CON to Low [Hb] conditions. PaO2 was no different between CON and Low [Hb], although CaO2 was 10.4%, 9.2% and 9.8% lower at 18%, 14% and 12.5% O2 , respectively. QIPAVA significantly increased as PaO2 decreased and, despite reduced CaO2, was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA . Whether the low PO2 is detected at the carotid body, airway and/or the vasculature remains unknown.


Assuntos
Anastomose Arteriovenosa/fisiopatologia , Hipóxia/fisiopatologia , Oxigênio/fisiologia , Adulto , Determinação do Volume Sanguíneo , Feminino , Ferritinas/sangue , Humanos , Ferro/sangue , Masculino , Testes de Função Respiratória , Adulto Jovem
8.
J Appl Physiol (1985) ; 118(9): 1100-12, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25678698

RESUMO

A patent foramen ovale (PFO), present in ∼40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated differences between subjects with (PFO+) or without a PFO (PFO-). We hypothesized that in PFO+ subjects A-aDO2 would not improve (i.e., decrease) after acclimatization to high altitude compared with PFO- subjects. Twenty-one (11 PFO+) healthy sea-level residents were studied at rest and during cycle ergometer exercise at the highest iso-workload achieved at sea level (SL), after acute transport to 5,260 m (ALT1), and again at 5,260 m after 16 days of high-altitude acclimatization (ALT16). In contrast to PFO- subjects, PFO+ subjects had 1) no improvement in A-aDO2 at rest and during exercise at ALT16 compared with ALT1, 2) no significant increase in resting alveolar ventilation, or alveolar Po2, at ALT16 compared with ALT1, and consequently had 3) an increased arterial Pco2 and decreased arterial Po2 and arterial O2 saturation at rest at ALT16. Furthermore, PFO+ subjects had an increased incidence of acute mountain sickness (AMS) at ALT1 concomitant with significantly lower peripheral O2 saturation (SpO2). These data suggest that PFO+ subjects have increased susceptibility to AMS when not taking prophylactic treatments, that right-to-left shunt through a PFO impairs pulmonary gas exchange efficiency even after acclimatization to high altitude, and that PFO+ subjects have blunted ventilatory acclimatization after 16 days at altitude compared with PFO- subjects.


Assuntos
Aclimatação/fisiologia , Forame Oval Patente/fisiopatologia , Troca Gasosa Pulmonar/fisiologia , Adulto , Altitude , Doença da Altitude/fisiopatologia , Gasometria/métodos , Dióxido de Carbono/metabolismo , Exercício Físico/fisiologia , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Descanso/fisiologia , Adulto Jovem
9.
Ann Am Thorac Soc ; 11(10): 1528-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25380058

RESUMO

RATIONALE: Adults born very to extremely preterm, with or without bronchopulmonary dysplasia (BPD), have obstructive lung disease, but it is unknown whether this results in respiratory limitations, such as mechanical constraints to Vt expansion during exercise leading to intolerable dyspnea and reduced exercise tolerance, as it does in patients with chronic obstructive pulmonary disease. OBJECTIVES: To test the hypothesis that adult survivors of preterm birth (≤32 wk gestational age) with (n = 20) and without BPD (n = 15) with reduced exercise capacity demonstrate clinically important respiratory limitations at near-maximal exercise compared with full-term control subjects (n = 20). METHODS: Detailed ventilatory and sensory measurements were made before and during exercise on all patients in the three study groups. MEASUREMENTS AND MAIN RESULTS: During exercise at 90% of peak [Formula: see text]o2 ([Formula: see text]o2peak), inspiratory reserve volume decreased to ∼0.5 L in all groups, but this occurred at significantly lower absolute workloads and [Formula: see text]e in ex-preterm subjects with and without BPD compared with full-term control subjects. Severe dyspnea was present and similar at comparable [Formula: see text]e between all groups, but leg discomfort at comparable workloads was greater in ex-preterm subjects with and without BPD compared with control subjects. At 50 to 90% of [Formula: see text]o2peak, exercise-induced expiratory flow limitation was significantly greater in ex-preterm subjects with BPD compared with ex-preterm subjects without BPD and control subjects. The degree of expiratory flow limitation in ex-preterm subjects with and without BPD was significantly related to neonatal O2 therapy duration. CONCLUSIONS: Severe dyspnea and leg discomfort associated with critical constraints on Vt expansion may lead to reduced exercise tolerance in adults born very or extremely preterm, whether or not their birth was complicated by BPD and despite differences in expiratory flow limitation. In this regard, adults born very or extremely preterm have respiratory limitations to exercise similar to patients with chronic obstructive pulmonary disease.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Tolerância ao Exercício/fisiologia , Volume Expiratório Forçado/fisiologia , Nascimento Prematuro/fisiopatologia , Sobreviventes/estatística & dados numéricos , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Estudos Retrospectivos , Adulto Jovem
10.
J Appl Physiol (1985) ; 117(5): 473-81, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24970854

RESUMO

Adults with a history of very preterm birth (<32 wk gestational age; PRET) have reduced lung function and significantly lower lung diffusion capacity for carbon monoxide (DLCO) relative to individuals born at term (CONT). Low DLCO may predispose PRET to diffusion limitation during exercise, particularly while breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET (n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT (n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency.


Assuntos
Exercício Físico/fisiologia , Hipóxia/metabolismo , Lactente Extremamente Prematuro/fisiologia , Capacidade de Difusão Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia , Adolescente , Adulto , Limiar Anaeróbio/fisiologia , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
12.
J Appl Physiol (1985) ; 115(7): 1050-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23869070

RESUMO

Cardiopulmonary function is reduced in adults born very preterm, but it is unknown if this results in reduced pulmonary gas exchange efficiency during exercise and, consequently, leads to reduced aerobic capacity in subjects with and without bronchopulmonary dysplasia (BPD). We hypothesized that an excessively large alveolar to arterial oxygen difference (AaDO2) and resulting exercise-induced arterial hypoxemia (EIAH) would contribute to reduced aerobic fitness in adults born very preterm with and without BPD. Measurements of pulmonary function, lung volumes and diffusion capacity for carbon monoxide (DLco) were made at rest. Measurements of maximal oxygen consumption, peak workload, temperature- and tonometry-corrected arterial blood gases, and direct measure of hemoglobin saturation with oxygen (SaO2) were made preexercise and during cycle ergometer exercise in ex-preterm subjects ≤32-wk gestational age, with BPD (n = 12), without BPD (PRE; n = 12), and full term controls (CONT; n = 12) breathing room air. Both BPD and PRE had reduced pulmonary function and reduced DLco compared with CONT. The AaDO2 was not significantly different between groups, and there was no evidence of EIAH (SaO2 < 95% and/or AaDO2 ≥ 40 Torr) in any subject group preexercise or at any workload. Arterial O2 content was not significantly different between the groups preexercise or during exercise. However, peak power output was decreased in BPD and PRE subjects compared with CONT. We conclude that EIAH in adult subjects born very preterm with and without BPD does not likely contribute to the reduction in aerobic exercise capacity observed in these subjects.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Hiperemia/fisiopatologia , Pulmão/fisiopatologia , Troca Gasosa Pulmonar/fisiologia , Adulto , Artérias/metabolismo , Artérias/fisiopatologia , Gasometria/métodos , Displasia Broncopulmonar/metabolismo , Monóxido de Carbono/metabolismo , Exercício Físico/fisiologia , Tolerância ao Exercício/fisiologia , Feminino , Hemoglobinas/metabolismo , Humanos , Hiperemia/metabolismo , Lactente , Pulmão/metabolismo , Masculino , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Respiração , Testes de Função Respiratória/métodos , Volume de Ventilação Pulmonar/fisiologia , Adulto Jovem
13.
Respir Physiol Neurobiol ; 188(1): 71-8, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23648476

RESUMO

Our purpose was to report the prevalence of healthy, young, asymptomatic humans who demonstrate left heart contrast at rest, breathing room air. We evaluated 176 subjects (18-41 years old) using transthoracic saline contrast echocardiography. Left heart contrast appearing ≤3 cardiac cycles, consistent with a patent foramen ovale (PFO), was detected in 67 (38%) subjects. Left heart contrast appearing >3 cardiac cycles, consistent with the transpulmonary passage of contrast, was detected in 49 (28%) subjects. Of these 49 subjects, 31 were re-evaluated after breathing 100% O2 for 10-15min and 6 (19%) continued to demonstrate the transpulmonary passage of contrast. Additionally, 18 of these 49 subjects were re-evaluated in the upright position and 1 (5%) continued to demonstrate the transpulmonary passage of contrast. These data suggest that ~30% of healthy, young, asymptomatic subjects demonstrate the transpulmonary passage of contrast at rest which is reduced by breathing 100% O2 and assuming an upright body position.


Assuntos
Doenças Assintomáticas , Ecocardiografia/métodos , Nível de Saúde , Ventrículos do Coração/diagnóstico por imagem , Mecânica Respiratória/fisiologia , Descanso/fisiologia , Adolescente , Adulto , Ar , Feminino , Humanos , Masculino , Prevalência , Respiração , Estudos Retrospectivos , Adulto Jovem
14.
Injury ; 41 Suppl 2: S16-23, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21144922

RESUMO

Embolic insults account for a significant number of neurologic sequelae following many routine surgical procedures. Clearly, these post-intervention embolic events are a serious public health issue as they are potentially life altering. However, the pathway these emboli utilize to bypass the pulmonary microcirculatory sieve in patients without an intracardiac shunt such as an atrial septal defect or patent foramen ovale, remains unclear. In the absence of intracardiac routes and large diameter pulmonary arteriovenous malformations, inducible large diameter intrapulmonary arteriovenous anastomoses in otherwise healthy adult humans may prove to be the best explanation. Our group and others have demonstrated that inducible large diameter intrapulmonary arteriovenous anastomoses are closed at rest but can open during hyperdynamic conditions such as exercise in more than 90% of healthy humans. Furthermore, the patency of these intrapulmonary anastomoses can be modulated through the fraction of inspired oxygen and by body positioning. Of particular clinical interest, there appears to be a strong association between arterial hypoxemia and neurologic insults, suggesting a breach in the filtering ability of the pulmonary microvasculature under these conditions. In this review, we present evidence demonstrating the existence of inducible intrapulmonary arteriovenous anastomoses in healthy humans that are modulated by exercise, oxygen tension and body positioning. Additionally, we identify several clinical conditions associated with both arterial hypoxemia and an increased risk for embolic insults. Finally, we suggest some precautionary measures that should be taken during interventions to keep intrapulmonary arteriovenous anastomoses closed in order to prevent or reduce the incidence of paradoxical embolism.


Assuntos
Anastomose Arteriovenosa/fisiopatologia , Embolia/etiologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Pulmão/irrigação sanguínea , Circulação Pulmonar/fisiologia , Anastomose Arteriovenosa/metabolismo , Embolia/fisiopatologia , Embolia/prevenção & controle , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Oxigênio/fisiologia , Postura/fisiologia
15.
J Appl Physiol (1985) ; 109(4): 1072-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20689088

RESUMO

Intrapulmonary arteriovenous (IPAV) shunting has been shown to occur at rest in some subjects breathing a hypoxic gas mixture [fraction of inspired oxygen (FI(O(2))) = 0.12] for brief periods of time. In the present study we set out to determine if IPAV shunting could be induced at rest in all subjects exposed to hypoxia for 30 min. Twelve subjects (6 women) breathed four levels of hypoxia (FI(O(2)) = 0.16, 0.14, 0.12, and 0.10) for 30 min each in either an ascending or descending order with a 15-min normoxic break between bouts. Saline contrast echocardiography was used to detect IPAV shunt and a shunt score (0-5) was assigned based on contrast in the left ventricle with a shunt score ≥ 2 considered significant. Pulmonary artery systolic pressure (PASP) was determined using Doppler ultrasound. The total number of subjects demonstrating shunt scores ≥ 2 for FI(O(2)) = 0.16, 0.14, 0.12, and 0.10 was 1/12, 7/12, 9/12, and 12/12, respectively. Shunt scores were variable between subjects but significantly greater than normoxia for FI(O(2)) = 0.12 and 0.10. Shunt scores correlated with peripheral measurements of arterial oxygen saturation (SpO(2)) (r(w) = -0.67) and PASP (r(w) = 0.44), despite an increased shunt score but no increase in PASP while breathing an FI(O(2)) = 0.12. It is unknown how hypoxia induces the opening of IPAV shunts, but these vessels may be controlled via similar mechanisms as systemic vessels that vasodilate in response to hypoxia. Despite intersubject variability our results indicate significant IPAV shunting occurs at rest in all subjects breathing an FI(O(2)) = 0.10 for 30 min.


Assuntos
Hipóxia/fisiopatologia , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Veias Pulmonares/fisiopatologia , Adulto , Pressão Sanguínea , Feminino , Volume Expiratório Forçado , Humanos , Hipóxia/sangue , Hipóxia/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Fluxo Máximo Médio Expiratório , Oxigênio/sangue , Pico do Fluxo Expiratório , Artéria Pulmonar/diagnóstico por imagem , Veias Pulmonares/diagnóstico por imagem , Fatores de Tempo , Capacidade Pulmonar Total , Ultrassonografia , Capacidade Vital , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...