Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421905

RESUMO

Inhibition of reaching and grasping actions as an element of cognitive control and executive function is a vital component of sensorimotor behaviour that is often impaired in patients who have lost sensorimotor function following a stroke. To date, there are few kinematic studies detailing the fine spatial and temporal upper limb movements associated with the millisecond temporal trajectory of correct and incorrect responses to visually driven Go/No-Go reaching and grasping tasks. Therefore, we aimed to refine the behavioural measurement of correct and incorrect inhibitory motor responses in a Go/No-Go task for future quantification and personalized rehabilitation in older populations and those with acquired motor disorders, such as stroke. An exploratory study mapping the kinematic profiles of hand movements in neurotypical participants utilizing such a task was conducted using high-speed biological motion capture cameras, revealing both within and between subject differences in a sample of healthy participants. These kinematic profiles and differences are discussed in the context of better assessment of sensorimotor function impairment in stroke survivors.

2.
Sleep ; 40(10)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28958003

RESUMO

Introduction: Sleep either appeared once early in the evolution of animals, or at multiple instances over evolutionary time. Understanding whether sleep is a diagnostic trait for members of the kingdom Animalia has important implications for our understanding of the evolution of sleep and sleep functions. Unfortunately, knowledge on the phylogenetic breadth of sleep is restricted to vertebrates, a few arthropods and molluscs, and one species of nematode. There is a dearth of information on the other 30 or so animal phyla. Aims and Methods: Here, we provide original data on a previously unstudied group of animals with respect to sleep: platyhelminth flatworms. These free-living animals are relatively simple, with a rudimentary central nervous system and absence of many other specialized physiological systems. Results: Despite this simplicity, inactive flatworms appeared to be sleeping. Specifically, quiescence was organized in a circadian manner, occurring largely during the daytime. This basic rhythm persisted under constant darkness, suggesting that it was endogenously generated. Active flatworms responded more readily to stimulation, and flatworms recovered lost sleep by sleeping longer after a 3-hour period of inactivity deprivation. We were also able to increase inactivity in a dose-dependent manner with exposure to melatonin, a hormone that increases sleep in diurnal animals. Conclusions: Taken together, these data expand our understanding of the phylogenetic extent of sleep and reinforce the idea that sleep evolved early in the evolutionary history of animals. However, additional studies on other types of animals are required for a comprehensive understanding of the origin(s) and evolution of sleep.


Assuntos
Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Atividade Motora/fisiologia , Platelmintos/fisiologia , Sono/fisiologia , Animais , Evolução Biológica , Homeostase , Filogenia , Platelmintos/metabolismo , Privação do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...