Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt. %) were modified with 1%, 5%, and 10 wt. % of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.

2.
Biomater Biosyst ; 13: 100086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213985

RESUMO

The fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- ß-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO2 nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds. The nanocomposite scaffolds possessed precise structure with fine print resolution, a homogenous distribution of TCP and CeNP components, and mechanical properties appropriate for bone tissue engineering applications. Cell proliferation assays using osteoblast cultures confirmed the cytocompatibility of the composites. In addition, the presence of CeNPs enhanced the proliferation and differentiation of mesenchymal stem cells; thereby, increasing alkaline phosphatase (ALP) activity, calcium deposition and bone-related gene expression. Results from this study have shown that the 3D printed PLA-TCP-10%CeO2 composite scaffold could be used as an alternative polymeric implant for bone tissue engineering applications: avoiding additional/revision surgeries and accelerating the regenerative process.

3.
Tissue Eng Regen Med ; 21(2): 223-242, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856070

RESUMO

BACKGROUND: Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of ß-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS: We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS: The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION: The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.


Assuntos
Fosfatos de Cálcio , Óxido de Magnésio , Alicerces Teciduais , Óxido de Magnésio/farmacologia , Óxido de Magnésio/química , Alicerces Teciduais/química , Dióxido de Silício , Teste de Materiais , Poliésteres , Polímeros/química , Ácido Láctico/química , Impressão Tridimensional
4.
Carbohydr Polym ; 173: 508-518, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28732894

RESUMO

Water suspensions of cellulose nanofibres with xylan, xyloglucan and pectin were studied for foaming and structural properties as a new means for food structuring. The dispersions were analysed with rheological measurements, microscopy and optical coherence tomography. A combination of xylan with TEMPO-oxidized nanocellulose produced a mixture with well-dispersed air bubbles, while the addition of pectin improved the elastic modulus, hardness and toughness of the structures. A similar structure was observed with native nanocellulose, but the elastic modulus was not as high. Shear flow caused cellulose nanofibres to form plate-like flocs in the suspension that accumulated near bubble interfaces. This tendency could be affected by adding laccase to the dispersion, but the effect was opposite for native and TEMPO-oxidized nanocellulose. Nanocellulose type also influenced the interactions between nanofibers and other polysaccharides. For example, xyloglucan interacted strongly with TEMPO-oxidized nanocellulose (high storage modulus) but not with native nanocellulose.


Assuntos
Parede Celular/química , Celulose/química , Células Vegetais/química , Polissacarídeos/química , Óxidos N-Cíclicos , Glucanos , Nanofibras , Pectinas , Xilanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...