Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 8(1): eplantgenome2014.08.0037, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33228291

RESUMO

Molecular characterization of events is an integral part of the advancement process during genetically modified (GM) crop product development. Assessment of these events is traditionally accomplished by polymerase chain reaction (PCR) and Southern blot analyses. Southern blot analysis can be time-consuming and comparatively expensive and does not provide sequence-level detail. We have developed a sequence-based application, Southern-by-Sequencing (SbS), utilizing sequence capture coupled with next-generation sequencing (NGS) technology to replace Southern blot analysis for event selection in a high-throughput molecular characterization environment. SbS is accomplished by hybridizing indexed and pooled whole-genome DNA libraries from GM plants to biotinylated probes designed to target the sequence of transformation plasmids used to generate events within the pool. This sequence capture process enriches the sequence data obtained for targeted regions of interest (transformation plasmid DNA). Taking advantage of the DNA adjacent to the targeted bases (referred to as next-to-target sequence) that accompanies the targeted transformation plasmid sequence, the data analysis detects plasmid-to-genome and plasmid-to-plasmid junctions introduced during insertion into the plant genome. Analysis of these junction sequences provides sequence-level information as to the following: the number of insertion loci including detection of unlinked, independently segregating, small DNA fragments; copy number; rearrangements, truncations, or deletions of the intended insertion DNA; and the presence of transformation plasmid backbone sequences. This molecular evidence from SbS analysis is used to characterize and select GM plants meeting optimal molecular characterization criteria. SbS technology has proven to be a robust event screening tool for use in a high-throughput molecular characterization environment.

2.
Theor Appl Genet ; 120(2): 355-67, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19756477

RESUMO

DNA polymorphisms such as insertion/deletions and duplications affecting genome segments larger than 1 kb are known as copy-number variations (CNVs) or structural variations (SVs). They have been recently studied in animals and humans by using array-comparative genome hybridization (aCGH), and have been associated with several human diseases. Their presence and phenotypic effects in plants have not been investigated on a genomic scale, although individual structural variations affecting traits have been described. We used aCGH to investigate the presence of CNVs in maize by comparing the genome of 13 maize inbred lines to B73. Analysis of hybridization signal ratios of 60,472 60-mer oligonucleotide probes between inbreds in relation to their location in the reference genome (B73) allowed us to identify clusters of probes that deviated from the ratio expected for equal copy-numbers. We found CNVs distributed along the maize genome in all chromosome arms. They occur with appreciable frequency in different germplasm subgroups, suggesting ancient origin. Validation of several CNV regions showed both insertion/deletions and copy-number differences. The nature of CNVs detected suggests CNVs might have a considerable impact on plant phenotypes, including disease response and heterosis.


Assuntos
Genoma de Planta , Zea mays/genética , Alelos , Hibridização Genômica Comparativa , Dosagem de Genes , Endogamia , Análise de Sequência com Séries de Oligonucleotídeos
3.
Plant Cell ; 14(10): 2591-612, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12368507

RESUMO

Maize starchy endosperm mutants have kernel phenotypes that include a brittle texture, susceptibility to insect pests, and inferior functional characteristics of products made from their flour. At least 18 such mutants have been identified, but only in the cases of opaque2 (o2) and floury2 (fl2), which affect different aspects of storage protein synthesis, is the molecular basis of the mutation known. To better understand the relationship between the phenotypes of these mutants and their biochemical bases, we characterized the protein and amino acid composition, as well as the mRNA transcript profiles, of nearly isogenic inbred lines of W64A o1, o2, o5, o9, o11, Mucuronate (Mc), Defective endosperm B30 (DeB30), and fl2. The largest reductions in zein protein synthesis occur in the W64A o2, DeB30, and fl2 mutants, which have approximately 35 to 55% of the wild-type level of storage proteins. Zeins in W64A o5, o9, o11, and Mc are within 80 to 90% of the amount found in the wild type. Only in the cases of o5 and Mc were significant qualitative changes in zein synthesis observed. The pattern of gene expression in normal and mutant genotypes was assayed by profiling endosperm mRNA transcripts at 18 days after pollination with an Affymetrix GeneChip containing >1400 selected maize gene sequences. Compared with W64A sugary1, a mutant defective in starch synthesis, alterations in the gene expression patterns of the opaque mutants are very pleiotropic. Increased expression of genes associated with physiological stress, and the unfolded protein response, are common features of the opaque mutants. Based on global patterns of gene expression, these mutants were categorized in four phenotypic groups as follows: W64A+ and o1; o2; o5/o9/o11; and Mc and fl2.


Assuntos
Sementes/genética , Zea mays/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Zea mays/metabolismo , Zeína/biossíntese , Zeína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...