Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Colorectal Cancer ; 23(1): 22-34.e2, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37980216

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a major cause of cancer mortality in the world. One of the most widely used screening tests for CRC is the immunochemical fecal occult blood test (iFOBT), which detects human hemoglobin from patient's stool sample. Although it is highly efficient in detecting blood from patients with gastro-intestinal lesions, such as polyps and cancers, the iFOBT has a high rate of false positive discovery. Recent studies suggested gut bacteria as a promising noninvasive biomarker for improving the diagnosis of CRC. In this study, we examined the composition of gut bacteria using iFOBT leftover from patients undergoing screening test along with a colonoscopy. METHODS: After collecting data from more than 800 patients, we considered 4 groups for this study. The first and second groups were respectively "healthy" in which the patients had either no blood in their stool or had blood but no lesions. The third and fourth groups of patients had both blood in their stools with precancerous and cancerous lesions and considered either as low-grade and high-grade lesion groups, respectively. An amplification of 16S rRNA (V4 region) gene was performed, followed by sequencing along with various statistical and bioinformatic analysis. RESULTS: We analyzed the composition of the gut bacteriome at phylum, class, genus, and species levels. Although members of the Firmicute phylum increased in the 3 groups compared to healthy patients, the phylum Actinobacteriota was found to decrease. Moreover, Blautia obeum and Anaerostipes hadrus from the phylum Firmicutes were increased and Collinsella aerofaciens from phylum Actinobacteriota was found decreased when healthy group is compared to the patients with high-grade lesions. Finally, among the 5 machine learning algorithms used to perform our analysis, both elastic net (AUC > 0.7) and random forest (AUC > 0.8) performs well in differentiating healthy patients from 3 other patient groups having blood in their stool. CONCLUSION: Our study integrates the iFOBT screening tool with gut bacterial composition to improve the prediction of CRC lesions.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Sangue Oculto , RNA Ribossômico 16S/genética , Detecção Precoce de Câncer , Programas de Rastreamento
2.
Mol Microbiol ; 116(5): 1361-1377, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34614242

RESUMO

This study identifies a post-transcriptional mechanism of iron uptake regulation by Puf2 and Puf4 of the Pumilio and FBF (Puf) family of RNA-binding proteins in Schizosaccharomyces pombe. Cells expressing Puf2 and Puf4 stimulate decay of the frp1+ mRNA encoding a key enzyme of the reductive iron uptake pathway. Results consistently showed that frp1+ mRNA is stabilized in puf2Δ puf4Δ mutant cells under iron-replete conditions. As a result, puf2Δ puf4Δ cells exhibit an increased sensitivity to iron accompanied by enhanced ferrireductase activity. A pool of GFP-frp1+ 3'UTR RNAs was generated using a reporter gene containing the 3' untranslated region (UTR) of frp1+ that was under the control of a regulatable promoter. Results showed that Puf2 and Puf4 accelerate the destabilization of mRNAs containing the frp1+ 3'UTR which harbors two Pumilio response elements (PREs). Binding studies revealed that the PUM-homology RNA-binding domain of Puf2 and Puf4 expressed in Escherichia coli specifically interacts with PREs in the frp1+ 3'UTR. Using RNA immunoprecipitation in combination with reverse transcription qPCR assays, results showed that Puf2 and Puf4 interact preferentially with frp1+ mRNA under basal and iron-replete conditions, thereby contributing to inhibit Frp1 production and protecting cells against toxic levels of iron.


Assuntos
FMN Redutase/genética , FMN Redutase/metabolismo , Ferro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regiões 3' não Traduzidas , DNA Fúngico , Regulação Fúngica da Expressão Gênica , Mutação , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Mol Microbiol ; 115(4): 699-722, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33140466

RESUMO

Str3 is a transmembrane protein that mediates low-affinity heme uptake in Schizosaccharomyces pombe. Under iron-limiting conditions, Str3 remains at the cell surface in the presence of increasing hemin concentrations. Using a proximity-dependent biotinylation approach coupled to mass spectrometry and coimmunoprecipitation assays, we report that the peroxiredoxin Tpx1 is a binding partner of Str3. Under microaerobic conditions, cells deficient in heme biosynthesis and lacking the heme receptor Shu1 exhibit poor hemin-dependent growth in the absence of Tpx1. Analysis of membrane protein preparations from iron-starved hem1Δ shu1Δ str3Δ tpx1Δ cells coexpressing Str3-GFP and TAP-Tpx1 showed that TAP-Tpx1 is enriched in membrane protein fractions in response to hemin. Bimolecular fluorescence complementation assays brought additional evidence that an interaction between Tpx1 and Str3 occurs at the plasma membrane. Results showed that Tpx1 exhibits an equilibrium constant value of 0.26 µM for hemin. The association of Tpx1 with hemin protects hemin from degradation by H2 O2 . The peroxidase activity of hemin is lowered when it is bound to Tpx1. Taken together, these results revealed that Tpx1 is a novel interacting partner of Str3. Our data are the first example of an interaction between a cytoplasmic heme-binding protein and a cell-surface heme transporter.


Assuntos
Hemeproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Biotinilação , Membrana Celular/metabolismo , DNA Fúngico , Heme/metabolismo , Hemeproteínas/genética , Hemina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Mutação , Oxirredução , Ligação Proteica , Schizosaccharomyces/enzimologia
4.
Genes Dev ; 34(13-14): 883-897, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499400

RESUMO

Transcription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). We unveil two mechanisms by which APA affects gene expression in the slow mutant: 3' UTR shortening and gene derepression by premature transcription termination of upstream interfering noncoding RNAs. Strikingly, the genes affected by these mechanisms are enriched for functions involved in phosphate uptake and purine synthesis, processes essential for maintenance of the intracellular nucleotide pool. As nucleotide concentration regulates transcription elongation, our findings argue that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , RNA Polimerase II/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Ativação Enzimática/efeitos dos fármacos , Genes Fúngicos/genética , Mutação , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fosfatos/farmacologia , Poliadenilação , Regiões Promotoras Genéticas/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
5.
PLoS One ; 13(8): e0201861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30086160

RESUMO

When reproduction in fungi takes place by sexual means, meiosis enables the formation of haploid spores from diploid precursor cells. Copper is required for completion of meiosis in Schizosaccharomyces pombe. During the meiotic program, genes encoding copper transporters exhibit distinct temporal expression profiles. In the case of the major facilitator copper transporter 1 (Mfc1), its maximal expression is induced during middle-phase meiosis and requires the presence of the Zn6Cys2 binuclear cluster-type transcription factor Mca1. In this study, we further characterize the mechanism by which Mca1 affects the copper-starvation-induced expression of mfc1+. Using a chromatin immunoprecipitation (ChIP) approach, results showed that a functional Mca1-TAP occupies the mfc1+ promoter irrespective of whether this gene is transcriptionally active. Under conditions of copper starvation, results showed that the presence of Mca1 promotes RNA polymerase II (Pol II) occupancy along the mfc1+ transcribed region. In contrast, Pol II did not significantly occupy the mfc1+ locus in meiotic cells that were incubated in the presence of copper. Further analysis by ChIP assays revealed that binding of Pol II to chromatin at the chromosomal locus of mfc1+ is exclusively detected during meiosis and absent in cells proliferating in mitosis. Protein function analysis of a series of internal mutants compared to the full-length Mca1 identified a minimal form of Mca1 consisting of its DNA-binding domain (residues 1 to 150) fused to the amino acids 299 to 600. This shorter form is sufficient to enhance Pol II occupancy at the mfc1+ locus under low copper conditions. Taken together, these results revealed novel characteristics of Mca1 and identified an internal region of Mca1 that is required to promote Pol II-dependent mfc1+ transcription during meiosis.


Assuntos
Caspases/metabolismo , Cobre/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequência de Aminoácidos , Caspases/genética , Cobre/deficiência , Regulação Fúngica da Expressão Gênica/fisiologia , Loci Gênicos , Meiose/fisiologia , Proteínas de Membrana Transportadoras/genética , Mitose/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética
6.
Metallomics ; 9(8): 1096-1105, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28725905

RESUMO

The fission yeast Schizosaccharomyces pombe expresses the CCAAT-binding factor Php4 in response to iron deprivation. Php4 forms a transcription complex with Php2, Php3, and Php5 to repress the expression of iron proteins as a means to economize iron usage. Previous in vivo results demonstrate that the function and location of Php4 are regulated in an iron-dependent manner by the cytosolic CGFS type glutaredoxin Grx4. In this study, we aimed to biochemically define these protein-protein and protein-metal interactions. Grx4 was found to bind a [2Fe-2S] cluster with spectroscopic features similar to other CGFS glutaredoxins. Grx4 and Php4 also copurify as a complex with a [2Fe-2S] cluster that is spectroscopically distinct from the cluster on Grx4 alone. In vitro titration experiments suggest that these Fe-S complexes may not be interconvertible in the absence of additional factors. Furthermore, conserved cysteines in Grx4 (Cys172) and Php4 (Cys221 and Cys227) are necessary for Fe-S cluster binding and stable complex formation. Together, these results show that Grx4 controls Php4 function through binding of a bridging [2Fe-2S] cluster.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Cisteína/metabolismo , Regulação Fúngica da Expressão Gênica , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fator de Ligação a CCAAT/genética , Glutarredoxinas/genética , Proteínas Ferro-Enxofre/genética , Modelos Moleculares , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
7.
J Biol Chem ; 290(37): 22622-37, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26229103

RESUMO

Sense and antisense transcripts produced from convergent gene pairs could interfere with the expression of either partner gene. In Schizosaccharomyces pombe, we found that the iss1(+) gene produces two transcript isoforms, including a long antisense mRNA that is complementary to the meiotic cum1(+) sense transcript, inhibiting cum1(+) expression in vegetative cells. Inhibition of cum1(+) transcription was not at the level of its initiation because fusion of the cum1(+) promoter to the lacZ gene showed that activation of the reporter gene occurs in response to low copper conditions. Further analysis showed that the transcription factor Cuf1 and conserved copper-signaling elements (CuSEs) are required for induction of cum1(+)-lacZ transcription under copper deficiency. Insertion of a multipartite polyadenylation signal immediately downstream of iss1(+) led to the exclusive production of a shorter iss1(+) mRNA isoform, thereby allowing accumulation of cum1(+) sense mRNA in copper-limited vegetative cells. This finding suggested that the long iss1(+) antisense mRNA could pair with cum1(+) sense mRNA, thereby producing double-stranded RNA molecules that could induce RNAi. We consistently found that mutant strains for RNAi (dcr1Δ, ago1Δ, rdp1Δ, and clr4Δ) are defective in selectively eliminating cum1(+) sense transcript in the G1 phase of the cell cycle. Taken together, these results describe the first example of a copper-regulated meiotic gene repressed by an antisense transcription mechanism in vegetative cells.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Meiose/fisiologia , Mitose/fisiologia , RNA Antissenso/biossíntese , RNA Fúngico/metabolismo , Schizosaccharomyces/metabolismo , Fase G1/fisiologia , RNA Antissenso/genética , RNA Fúngico/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
PLoS One ; 9(10): e110721, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330182

RESUMO

Php4 is a nucleo-cytoplasmic shuttling protein that accumulates in the nucleus during iron deficiency. When present in the nucleus, Php4 associates with the CCAAT-binding protein complex and represses genes encoding iron-using proteins. Here, we show that nuclear import of Php4 is independent of the other subunits of the CCAAT-binding complex. Php4 nuclear import relies on two functionally independent nuclear localization sequences (NLSs) that are located between amino acid residues 171 to 174 (KRIR) and 234 to 240 (KSVKRVR). Specific substitutions of basic amino acid residues to alanines within these sequences are sufficient to abrogate nuclear targeting of Php4. The two NLSs are biologically redundant and are sufficient to target a heterologous reporter protein to the nucleus. Under low-iron conditions, a functional GFP-Php4 protein is only partly targeted to the nucleus in imp1Δ and sal3Δ mutant cells. We further found that cells expressing a temperature-sensitive mutation in cut15 exhibit increased cytosolic accumulation of Php4 at the nonpermissive temperature. Further analysis by pull-down experiments revealed that Php4 is a cargo of the karyopherins Imp1, Cut15 and Sal3. Collectively, these results indicate that Php4 can be bound by distinct karyopherins, connecting it into more than one nuclear import pathway.


Assuntos
Fator de Ligação a CCAAT/genética , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , alfa Carioferinas/biossíntese , alfa Carioferinas/genética , beta Carioferinas/genética , Transporte Ativo do Núcleo Celular/genética , Substituição de Aminoácidos/genética , Fator de Ligação a CCAAT/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , alfa Carioferinas/metabolismo
9.
J Biol Chem ; 289(14): 10168-81, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24569997

RESUMO

Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Membranas Intracelulares/metabolismo , Meiose/fisiologia , Schizosaccharomyces/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte de Cátions/genética , Transporte Proteico/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vacúolos/genética
10.
Biochem Soc Trans ; 41(6): 1679-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256274

RESUMO

The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.


Assuntos
Cobre/metabolismo , Schizosaccharomyces/metabolismo , Mitose , Schizosaccharomyces/citologia
11.
Eukaryot Cell ; 12(4): 575-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23397571

RESUMO

Mfc1 is a meiosis-specific protein that mediates copper transport during the meiotic program in Schizosaccharomyces pombe. Although the mfc1(+) gene is induced at the transcriptional level in response to copper deprivation, the molecular determinants that are required for its copper starvation-dependent induction are unknown. Promoter deletion and site-directed mutagenesis have allowed identification of a new cis-regulatory element in the promoter region of the mfc1(+) gene. This cis-acting regulatory sequence containing the sequence TCGGCG is responsible for transcriptional activation of mfc1(+) under low-copper conditions. The TCGGCG sequence contains a CGG triplet known to serve as a binding site for members of the Zn(2)Cys(6) binuclear cluster transcriptional regulator family. In agreement with this fact, one member of this group of regulators, denoted Mca1, was found to be required for maximum induction of mfc1(+) gene expression. Analysis of Mca1 cellular distribution during meiosis revealed that it colocalizes with both chromosomes and sister chromatids during early, middle, and late phases of the meiotic program. Cells lacking Mca1 exhibited a meiotic arrest at metaphase I under low-copper conditions. Binding studies revealed that the N-terminal 150-residue segment of Mca1 expressed as a fusion protein in Escherichia coli specifically interacts with the TCGGCG sequence of the mfc1(+) promoter. Taken together, these results identify the cis-regulatory TCGGCG sequence and the transcription factor Mca1 as critical components for activation of the meiotic copper transport mfc1(+) gene in response to copper starvation.


Assuntos
Sequência de Bases , Cobre/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Deleção de Sequência , Sequência de Aminoácidos , Sítios de Ligação , Cromossomos Fúngicos , Cobre/deficiência , Escherichia coli/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
12.
Commun Integr Biol ; 5(2): 118-21, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808312

RESUMO

Meiosis is a specialized cell division process by which diploid germ line cells generate haploid gametes, which are required for sexual reproduction. During this process, several micronutrients are required, including copper ions. Despite important roles for copper-dependent proteins during meiosis, their mechanisms of action remain poorly understood. In a recently publication, we reported the discovery of Mfc1, the first example ever reported of a meiosis-specific copper transporter. Although Mfc1 did not exhibit any significant amino acid sequence similarities with members of the Ctr family of copper transporters, it harbored putative copper coordination motifs. Microarray data showed that mfc1(+) was the most highly induced of all meiotic genes detected under copper-limiting conditions. Analysis of Mfc1 localization during meiosis revealed that it localized at the forespore membrane during middle and late phases of the meiotic program. Interestingly, live-cell copper imaging using a copper-binding tracker revealed accumulation of copper ions into the forespore in wild-type cells. In contrast, mutant cells lacking Mfc1 displayed an intracellular distribution of copper ions that was dispersed throughout the ascospores without any marked preference for the forespore. We propose that Mfc1 is required to mobilize copper into the forespore, thereby providing copper to copper-requiring enzymes of the developing spores.

13.
PLoS One ; 7(4): e36338, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558440

RESUMO

BACKGROUND: Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors. PRINCIPAL FINDINGS: In this report a novel copper-fist-type regulator, Cuf2, is shown to be expressed exclusively during meiosis. The expression profile of the cuf2(+) mRNA revealed that it was induced during middle-phase meiosis. Both cuf2(+) mRNA and protein levels are unregulated by copper addition or starvation. The transcription of cuf2(+) required the presence of a functional mei4(+) gene encoding a key transcription factor that activates the expression of numerous middle meiotic genes. Microscopic analyses of cells expressing a functional Cuf2-GFP protein revealed that Cuf2 co-localized with both homologous chromosomes and sister chromatids during the meiotic divisions. Cells lacking Cuf2 showed an elevated and sustained expression of several of the middle meiotic genes that persisted even during late meiosis. Moreover, cells carrying disrupted cuf2Δ/cuf2Δ alleles displayed an abnormal morphology of the forespore membranes and a dramatic reduction of spore viability. SIGNIFICANCE: Collectively, the results revealed that Cuf2 functions in the timely repression of the middle-phase genes during meiotic differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Anáfase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Espaço Intracelular/metabolismo , Metáfase , Dados de Sequência Molecular , Transporte Proteico , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
14.
J Biol Chem ; 286(39): 34356-72, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21828039

RESUMO

To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , Meiose/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , Membrana Celular/genética , Transporte de Íons/fisiologia , Proteínas SLC31 , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
15.
Microbiology (Reading) ; 157(Pt 4): 1021-1031, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21273250

RESUMO

The Ctr1 family of proteins mediates high-affinity copper (Cu) acquisition in eukaryotic organisms. In the fission yeast Schizosaccharomyces pombe, Cu uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Unlike human and Saccharomyces cerevisiae Ctr1 proteins, Ctr4 and Ctr5 are unable to function independently in Cu acquisition. Instead, both proteins physically interact with each other to form a Ctr4-Ctr5 heteromeric complex, and are interdependent for secretion to the plasma membrane and Cu transport activity. In this study, we used S. cerevisiae mutants that are defective in high-affinity Cu uptake to dissect the relative contribution of Ctr4 and Ctr5 to the Cu transport function. Functional complementation and localization assays show that the conserved Met-X(3)-Met motif in transmembrane domain 2 of the Ctr5 protein is dispensable for the functionality of the Ctr4-Ctr5 complex, whereas the Met-X(3)-Met motif in the Ctr4 protein is essential for function and for localization of the hetero-complex to the plasma membrane. Moreover, Ctr4/Ctr5 chimeric proteins reveal unique properties found either in Ctr4 or in Ctr5, and are sufficient for Cu uptake on the cell surface of Sch. pombe cells. Functional chimeras contain the Ctr4 central and Ctr5 carboxyl-terminal domains (CTDs). We propose that the Ctr4 central domain mediates Cu transport in this hetero-complex, whereas the Ctr5 CTD functions in the regulation of trafficking of the Cu transport complex to the cell surface.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Membrana Celular/química , Teste de Complementação Genética , Humanos , Estrutura Terciária de Proteína , Proteínas SLC31 , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
16.
PLoS One ; 5(8): e11964, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20694150

RESUMO

BACKGROUND: In Schizosaccharomyces pombe, copper uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Copper-induced differential subcellular localization may play a critical role with respect to fine tuning the number of Ctr4 and Ctr5 molecules at the cell surface. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a bimolecular fluorescence complementation (BiFC) assay to analyze protein-protein interactions in vivo in S. pombe. The assay is based on the observation that N- and C-terminal subfragments of the Venus fluorescent protein can reconstitute a functional fluorophore only when they are brought into tight contact. Wild-type copies of the ctr4(+) and ctr5(+) genes were inserted downstream of and in-frame with the nonfluorescent C-terminal (VC) and N-terminal (VN) coding fragments of Venus, respectively. Co-expression of Ctr4-VC and Ctr5-VN fusion proteins allowed their detection at the plasma membrane of copper-limited cells. Similarly, cells co-expressing Ctr4-VN and Ctr4-VC in the presence of Ctr5-Myc(12) displayed a fluorescence signal at the plasma membrane. In contrast, Ctr5-VN and Ctr5-VC co-expressed in the presence of Ctr4-Flag(2) failed to be visualized at the plasma membrane, suggesting a requirement for a combination of two Ctr4 molecules with one Ctr5 molecule. We found that plasma membrane-located Ctr4-VC-Ctr5-VN fluorescent complexes were internalized when the cells were exposed to high levels of copper. The copper-induced internalization of Ctr4-VC-Ctr5-VN complexes was not dependent on de novo protein synthesis. When cells were transferred back from high to low copper levels, there was reappearance of the BiFC fluorescent signal at the plasma membrane. SIGNIFICANCE: These findings reveal a copper-dependent internalization and recycling of the heteromeric Ctr4-Ctr5 complex as a function of copper availability.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Bases , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Sobrevivência Celular , Microscopia de Fluorescência , Imagem Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Proteínas SLC31 , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
17.
Eukaryot Cell ; 8(4): 649-64, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19252122

RESUMO

In Schizosaccharomyces pombe, the iron sensor Fep1 mediates the transcriptional repression of iron transport genes in response to high concentrations of iron. On the other hand, fep1(+) expression is downregulated under conditions of iron starvation by the CCAAT-binding factor Php4. In this study, we created a fep1Delta php4Delta double mutant strain where expression of fep1(+) was disengaged from its iron limitation-dependent repression by Php4 to examine the effects of iron on constitutively expressed functional fep1(+)-GFP and TAP-fep1(+) alleles and their gene products. In these cells, Fep1-green fluorescent protein was invariably localized in the nucleus under both iron-limiting and iron-replete conditions. Using chromatin immunoprecipitation assays, we found that Fep1 is associated with iron-responsive promoters in vivo. Chromatin binding was iron dependent, with a loss of binding observed in the presence of low iron. Functional dissection of the protein revealed that the N-terminal 241-residue segment that includes two consensus Cys(2)/Cys(2)-type zinc finger motifs and a Cys-rich region is required for optimal promoter occupancy by Fep1. Within this segment, a minimal module encompassing amino acids 60 to 241 is sufficient for iron-dependent chromatin binding. Using yeast one-hybrid analysis, we showed that the replacement of the repression domain of Fep1 by fusing the activation domain of VP16 to the chromatin-binding fragment of amino acids 1 to 241 of Fep1 converts the protein from an iron-dependent repressor into an iron-dependent transcriptional activator. Thus, the repression function of Fep1 can be replaced with that of a transcriptional activation function without the loss of its iron-dependent DNA-binding activity.


Assuntos
Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/genética , Ferro/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fatores de Transcrição GATA/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Eukaryot Cell ; 7(10): 1781-94, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18723604

RESUMO

Copper amine oxidases (CAOs) have been proposed to be involved in the metabolism of xenobiotic and biogenic amines. The requirement for copper is absolute for their activity. In the fission yeast Schizosaccharomyces pombe, cao1(+) and cao2(+) genes are predicted to encode members of the CAO family. While both genes are expressed in wild-type cells, we determined that the expression of only cao1(+) but not cao2(+) results in the production of an active enzyme. Site-directed mutagenesis identified three histidine residues within the C-terminal region of Cao1 that are necessary for amine oxidase activity. By use of a cao1(+)-GFP allele that retained wild-type function, Cao1-GFP was localized in the cytosol (GFP is green fluorescent protein). Under copper-limiting conditions, disruption of ctr4(+), ctr5(+), and cuf1(+) produced a defect in amine oxidase activity, indicating that a functionally active Cao1 requires Ctr4/5-mediated copper transport and the transcription factor Cuf1. Likewise, atx1 null cells exhibited substantially decreased levels of amine oxidase activity. In contrast, deletion of ccc2, cox17, and pccs had no significant effect on Cao1 activity. Residual amine oxidase activity in cells lacking atx1(+) can be restored to normal levels by returning an atx1(+) allele, underscoring the critical importance of the presence of Atx1 in cells. Using two-hybrid analysis, we demonstrated that Cao1 physically interacts with Atx1 and that this association is comparable to that of Atx1 with the N-terminal region of Ccc2. Collectively, these results describe the first example of the ability of Atx1 to act as a copper carrier for a molecule other than Ccc2 and its critical role in delivering copper to Cao1.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Schizosaccharomyces/metabolismo , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/genética , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Yeast ; 24(10): 883-900, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17724773

RESUMO

The opportunistic pathogenic yeast Candida albicans contains a gene which encodes a putative member of the iron-regulatory GATA factor protein family. This protein, referred to as suppressor of ferric uptake (Sfu1), has two Cys(2)/Cys(2)-type zinc finger domains separated by a conserved Cys-rich region. In Schizosaccharomyces pombe, the GATA-type transcription factor Fe protein 1 (Fep1) represses target gene expression when iron levels exceed those needed by the cell. To ascertain the functional similarity between Sfu1 and Fep1, the C. albicans Sfu1 was expressed in Sz. pombe cells lacking the endogenous fep1(+) gene. We determined that Sfu1 is capable of suppressing iron-related phenotypes of fep1Delta mutant cells. Using a functional SFU1-GFP fusion allele, the Sfu1 protein was localized to the nucleus under both iron-replete and iron-starved conditions. Sfu1 effectively regulated the expression of genes encoding components of the reductive and non-reductive iron transport systems. Furthermore, the iron-responsive regulation mediated by Sfu1 was GATA-dependent. The N-terminal 250 amino acid segment of Sfu1 expressed in and purified from Escherichia coli specifically associated with the hexanucleotide sequence AGATAA in an iron-dependent manner. On the other hand, expression of the full-length C. albicans Sfu1 in Sz. pombe fep1Delta tup11Delta tup12Delta triple mutant cells failed to repress target gene expression under conditions of high iron concentration. Using two-hybrid analysis, we demonstrated that Tup11 and Tup12 physically interacted with Sfu1. Taken together, these results reveal a remarkable functional conservation between Sfu1 from C. albicans and Fep1 from Sz. pombe in their ability to sense excess iron and respond by repressing target gene transcription.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/fisiologia , Fatores de Transcrição GATA/fisiologia , Ferro/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular
20.
Eukaryot Cell ; 6(5): 764-75, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17384198

RESUMO

In this study, we examine the fate of the nuclear pool of the Schizosaccharomyces pombe transcription factor Cuf1 in response to variations in copper levels. A nuclear pool of Cuf1-green fluorescent protein (GFP) was generated by expressing a functional cuf1(+)-GFP allele in the presence of a copper chelator. We then extinguished cuf1(+)-GFP expression and tracked the changes in the localization of the nuclear pool of Cuf1-GFP in the presence of low or high copper concentrations. Treating cells with copper as well as silver ions resulted in the nuclear export of Cuf1. We identified a leucine-rich nuclear export signal (NES), (349)LAALNHISAL(358), within the C-terminal region of Cuf1. Mutations in this sequence abrogated Cuf1 export from the nucleus. Furthermore, amino acid substitutions that impair Cuf1 NES function resulted in increased target gene expression and a concomitant cellular hypersensitivity to copper. Export of the wild-type Cuf1 protein was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export protein Crm1. We further show that cells expressing a temperature-sensitive mutation in crm1(+) exhibit increased nuclear accumulation of Cuf1 at the nonpermissive temperature. Although wild-type Cuf1 is localized in the nucleus in both conditions, we observed that the protein can still be inactivated by copper, resulting in the repression of ctr4(+) gene expression in the presence of exogenous copper. These results demonstrate that nuclear accumulation of Cuf1 per se is not sufficient to cause the unregulated expression of the copper transport genes like ctr4(+). In addition to nuclear localization, a functional Cys-rich domain or NES element in Cuf1 is required to appropriately regulate copper transport gene expression in response to changes in intracellular copper concentration.


Assuntos
Núcleo Celular/metabolismo , Cobre/farmacologia , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Sequência de Aminoácidos , Aminoácidos , Núcleo Celular/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Sinais de Exportação Nuclear , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Prata/farmacologia , Temperatura , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...