Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977531

RESUMO

Evaluating the bone-implant interface (BII) properties of osseointegrated transfemoral (TFA) implants is important for early failure detection and prescribing loads during rehabilitation. The objective of this work is to derive and validate a 1D finite element (FE) model of the Osseointegrated Prosthetic Limb (OPL) TFA system that can: (1) model its dynamic behaviour and (2) extract the BII properties. The model was validated by: (1) comparing the 1D FE formulation to the analytical and 3D FE solutions for a simplified cylinder, (2) comparing the vibration modes of the actual TFA geometry using 1D and 3D FE models, and (3) evaluating the BII properties for three extreme conditions (LOW, INTERMEDIATE, and HIGH) generated using 3D FE and experimental (where the implant was embedded, using different adhesives, in synthetic femurs) signals for additional validation. The modes predicted by the 1D FE model converged to the analytical and the 3D FE solutions for the cylinder. The 1D model also matched the 3D FE solution with a maximum frequency difference of 2.02% for the TFA geometry. Finally, the 1D model extracted the BII stiffness and the system's damping properties for the three conditions generated using the 3D FE simulations and the experimental INTERMEDIATE and HIGH signals. The agreement between the 1D FE and the 3D FE solutions for the TFA geometry indicates that the 1D model captures the system's dynamic behaviour. Distinguishing between the different BII conditions demonstrates the 1D model's potential use for the non-invasive clinical evaluation of the TFA BII properties.

2.
J Wrist Surg ; 13(1): 38-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38264137

RESUMO

Background Graft preparation techniques for the Adams-Berger distal radioulnar joint (DRUJ) reconstruction vary among surgeons with insufficient evidence to support any specific technique. Questions/Purposes We compared survival with cyclic loading, absolute elongation, elongation rate, and modes of failure of four graft preparation techniques. Methods Fifteen porcine extensor tendons were divided into three equal groups: tendon only; tendon augmented along its full length with nonlocking 2-0 FiberLoop suture spaced at 6 mm intervals; and tendon with suture at 12 mm intervals. Suture only was also tested. Samples were woven through custom radius- and ulna-simulating jigs mounted on a mechanical testing machine. Samples underwent a staircase cyclic loading protocol and were then inspected visually for the mode of failure. Survival with cyclic loading, absolute elongation, and elongation rate was compared. Results Average survival with cyclic loading of suture-augmented tendon was significantly higher than tendon only. All tendon groups had significantly higher survival compared with suture only. Absolute elongation was subject to variability due to initial nonlinear elongation behavior of samples. The elongation rate was significantly lower with suture compared with all tendon groups. Modes of failure included rupture of the tendon and/or suture at the simulated graft-bone interface and elongation of the entire construct without rupture. Conclusions In this biomechanical study, augmentation of porcine tendons with suture spaced at either 6 or 12 mm for DRUJ reconstruction significantly increased survival to a staircase cyclic loading protocol Clinical Relevance For the Adams-Berger reconstruction, tendon grafts augmented along their entire length by nonabsorbable braided suture are biomechanically superior to tendon alone.

3.
Front Robot AI ; 9: 1076897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817004

RESUMO

This paper introduces an optimal algorithm for solving the discrete grid-based coverage path planning (CPP) problem. This problem consists in finding a path that covers a given region completely. First, we propose a CPP-solving baseline algorithm based on the iterative deepening depth-first search (ID-DFS) approach. Then, we introduce two branch-and-bound strategies (Loop detection and an Admissible heuristic function) to improve the results of our baseline algorithm. We evaluate the performance of our planner using six types of benchmark grids considered in this study: Coast-like, Random links, Random walk, Simple-shapes, Labyrinth and Wide-Labyrinth grids. We are first to consider these types of grids in the context of CPP. All of them find their practical applications in real-world CPP problems from a variety of fields. The obtained results suggest that the proposed branch-and-bound algorithm solves the problem optimally (i.e., the exact solution is found in each case) orders of magnitude faster than an exhaustive search CPP planner. To the best of our knowledge, no general CPP-solving exact algorithms, apart from an exhaustive search planner, have been proposed in the literature.

4.
J Neurotrauma ; 35(16): 1970-1985, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074874

RESUMO

Rehabilitative motor training is currently one of the most widely used approaches to promote moderate recovery following injuries of the central nervous system. Such training is generally applied in the clinical setting, whereas it is not standard in preclinical research. This is a concern as it is becoming increasingly apparent that neuroplasticity enhancing treatments require training or some form of activity as a co-therapy to promote functional recovery. Despite the importance of training and the many open questions regarding its mechanistic consequences, its use in preclinical animal models is rather limited. Here we review approaches, findings and challenges when training is applied in animal models of spinal cord injury, and we suggest recommendations to facilitate the integration of training using an appropriate study design, into pre-clinical studies.


Assuntos
Modelos Animais de Doenças , Condicionamento Físico Animal/métodos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/reabilitação , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...