Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(5): 1124-1135, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37144894

RESUMO

The accumulation and aggregation of the microtubule-associated protein tau (tau) into intracellular neuronal tangles are a hallmark of a range of progressive neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia, Pick's disease, and progressive supranuclear palsy. The aberrant phosphorylation of tau is associated with tau aggregates in AD. Members of the heat shock protein 70 kDa (Hsp70) family of chaperones bind directly to tau and modulate tau clearance and aggregation. Small molecules that inhibit the Hsp70 family of chaperones have been shown to reduce the accumulation of tau, including phosphorylated tau. Here, eight analogs of the rhodacyanine inhibitor, JG-98, were synthesized and evaluated. Like JG-98, many of the compounds inhibited ATPase activity of the cytosolic heat shock cognate 70 protein (Hsc70) and reduced total, aggregated, and phosphorylated tau accumulation in cultured cells. Three compounds, representing divergent clogP values, were evaluated for in vivo blood-brain barrier penetration and tau reduction in an ex vivo brain slice model. AL69, the compound with the lowest clogP and the lowest membrane retention in a parallel artificial membrane permeability assay (PAMPA), reduced phosphorylated tau accumulation. Our results suggest that benzothiazole substitutions of JG-98 that increase hydrophilicity may increase the efficacy of these Hsp70 inhibitors to reduce phosphorylated tau.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Benzotiazóis/farmacologia , Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas tau/metabolismo , Tauopatias/metabolismo
2.
Mol Neurodegener ; 17(1): 33, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526014

RESUMO

BACKGROUND: The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS: Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS: Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS: Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Microglia , Proteínas Nucleares , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/metabolismo , Animais , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteômica , Transcriptoma , Proteínas Supressoras de Tumor/genética
3.
Sci Rep ; 12(1): 7372, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513476

RESUMO

Tau accumulation and progressive loss of neurons are associated with Alzheimer's disease (AD). Aggregation of tau has been associated with endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). While ER stress and the UPR have been linked to AD, the contribution of these pathways to tau-mediated neuronal death is still unknown. We tested the hypothesis that reducing C/EBP Homologous Protein (CHOP), a UPR induced transcription factor associated with cell death, would mitigate tau-mediated neurotoxicity through the ER stress pathway. To evaluate this, 8.5-month-old male rTg4510 tau transgenic mice were injected with a CHOP-targeting or scramble shRNA AAV9 that also expressed EGFP. Following behavioral assessment, brain tissue was collected at 12 months, when ER stress and neuronal loss is ongoing. No behavioral differences in locomotion, anxiety-like behavior, or learning and memory were found in shCHOP mice. Unexpectedly, mice expressing shCHOP had higher levels of CHOP, which did not affect neuronal count, UPR effector (ATF4), or tau tangles. Overall, this suggests that CHOP is a not a main contributor to neuronal death in rTg4510 mice. Taken together with previous studies, we conclude that ER stress, including CHOP upregulation, does not worsen outcomes in the tauopathic brain.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Estresse do Retículo Endoplasmático/genética , Masculino , Camundongos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Regulação para Cima
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055033

RESUMO

The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.


Assuntos
Encéfalo/metabolismo , Cognição , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Aprendizagem , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Tauopatias/etiologia , Tauopatias/metabolismo , Animais , Biomarcadores , Encéfalo/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Expressão Gênica , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Fosforilação , Transdução de Sinais , Tauopatias/patologia , Transdução Genética , Proteínas tau/genética , Proteínas tau/metabolismo
5.
NPJ Aging Mech Dis ; 7(1): 9, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941782

RESUMO

Abnormal accumulation of hyperphosphorylated tau induces pathogenesis in neurodegenerative diseases, like Alzheimer's disease. Molecular chaperones with peptidyl-prolyl cis/trans isomerase (PPIase) activity are known to regulate these processes. Previously, in vitro studies have shown that the 52 kDa FK506-binding protein (FKBP52) interacts with tau inducing its oligomerization and fibril formation to promote toxicity. Thus, we hypothesized that increased expression of FKBP52 in the brains of tau transgenic mice would alter tau phosphorylation and neurofibrillary tangle formation ultimately leading to memory impairments. To test this, tau transgenic (rTg4510) and wild-type mice received bilateral hippocampal injections of virus overexpressing FKBP52 or GFP control. We examined hippocampal-dependent memory, synaptic plasticity, tau phosphorylation status, and neuronal health. This work revealed that rTg4510 mice overexpressing FKBP52 had impaired spatial learning, accompanied by long-term potentiation deficits and hippocampal neuronal loss, which was associated with a modest increase in total caspase 12. Together with previous studies, our findings suggest that FKBP52 may sensitize neurons to tau-mediated dysfunction via activation of a caspase-dependent pathway, contributing to memory and learning impairments.

7.
Acta Neuropathol Commun ; 9(1): 65, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832539

RESUMO

The microtubule associated protein tau is an intrinsically disordered phosphoprotein that accumulates under pathological conditions leading to formation of neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). The mechanisms that initiate the accumulation of phospho-tau aggregates and filamentous deposits are largely unknown. In the past, our work and others' have shown that molecular chaperones play a crucial role in maintaining protein homeostasis and that imbalance in their levels or activity can drive tau pathogenesis. We have found two co-chaperones of the 90 kDa heat shock protein (Hsp90), FK506-binding protein 52 (FKBP52) and the activator of Hsp90 ATPase homolog 1 (Aha1), promote tau aggregation in vitro and in the brains of tau transgenic mice. Based on this, we hypothesized that increased levels of these chaperones could promote tau misfolding and accumulation in the brains of aged wild-type mice. We tested this hypothesis by overexpressing Aha1, FKBP52, or mCherry (control) proteins in the hippocampus of 9-month-old wild-type mice. After 7 months of expression, mice were evaluated for cognitive and pathological changes. Our results show that FKBP52 overexpression impaired spatial reversal learning, while Aha1 overexpression impaired associative learning in aged wild-type mice. FKBP52 and Aha1 overexpression promoted phosphorylation of distinct AD-relevant tau species. Furthermore, FKBP52 activated gliosis and promoted neuronal loss leading to a reduction in hippocampal volume. Glial activation and phospho-tau accumulation were also detected in areas adjacent to the hippocampus, including the entorhinal cortex, suggesting that after initiation these pathologies can propagate through other brain regions. Overall, our findings suggest a role for chaperone imbalance in the initiation of tau accumulation in the aging brain.


Assuntos
Encéfalo/patologia , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Tauopatias/metabolismo
8.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751642

RESUMO

Misfolding, aggregation and accumulation of proteins are toxic elements in the progression of a broad range of neurodegenerative diseases. Molecular chaperones enable a cellular defense by reducing or compartmentalizing these insults. Small heat shock proteins (sHsps) engage proteins early in the process of misfolding and can facilitate their proper folding or refolding, sequestration, or clearance. Here, we evaluate the effects of the sHsp Hsp22, as well as a pseudophosphorylated mutant and an N-terminal domain deletion (NTDΔ) variant on tau aggregation in vitro and tau accumulation and aggregation in cultured cells. Hsp22 wild-type (WT) protein had a significant inhibitory effect on heparin-induced aggregation in vitro and the pseudophosphorylated mutant Hsp22 demonstrated a similar effect. When co-expressed in a cell culture model with tau, these Hsp22 constructs significantly reduced soluble tau protein levels when transfected at a high ratio relative to tau. However, the Hsp22 NTDΔ protein drastically reduced the soluble protein expression levels of both tau WT and tau P301L/S320F even at lower transfection ratios, which resulted in a correlative reduction of the triton-insoluble tau P301L/S320F aggregates.


Assuntos
Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Doenças Neurodegenerativas/genética , Proteínas tau/genética , Animais , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico Pequenas/genética , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas/genética , Ligação Proteica/genética , Deficiências na Proteostase/genética
9.
Int J Geriatr Psychiatry ; 33(2): 358-363, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28639714

RESUMO

OBJECTIVE: Detection of Alzheimer's disease (AD) prior to clinical inception will be paramount for introducing disease modifying treatments. We have begun collecting baseline characteristics of a community cohort for longitudinal assessment and testing of antecedent blood-based biomarkers. We describe the baseline visit from the first 131 subjects in relationship to a commonly described cytokine, interleukin 6 (IL-6). METHODS: Subjects from the community presented for a free memory screening with varying degrees of memory concern. We quantified the baseline plasma levels of the cytokine IL-6 and assessed cognition (Montreal Cognitive Assessment, MoCA) and mood (Geriatric Depression Scale, GDS) in relationship to their memory concern. RESULTS: Baseline MoCA scores were inversely related to age, and this association was influenced by an AD risk factor, Apolipoprotein E (APOE4) carrier status. The degree of subjective cognitive decline correlated with GDS and was inversely related to MoCA scores. Interleukin 6 levels were related to age, body mass index, and years of education. CONCLUSIONS: It will be important to assess how these baseline IL-6 levels and forthcoming novel biomarkers relate to future cognitive decline. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/sangue , Interleucina-6/sangue , Afeto/fisiologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/análise , Biomarcadores/sangue , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Avaliação Geriátrica/métodos , Humanos , Estudos Longitudinais , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica
10.
Acta Neuropathol Commun ; 5(1): 69, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877763

RESUMO

The pathology of Alzheimer's disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aß-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aß production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aß-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aß-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aß deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aß deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aß formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Encéfalo/enzimologia , Encéfalo/patologia , Quinase Syk/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/enzimologia , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/enzimologia , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Quinase Syk/genética , Proteínas tau/genética , Proteínas tau/metabolismo
12.
PLoS One ; 10(5): e0128224, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010758

RESUMO

Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe) of Alzheimer's disease (AD) which displays pathological Aß deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aß deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aß was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces ß-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.


Assuntos
Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Piridinas/farmacologia , Comportamento Social , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo
13.
J Biol Chem ; 289(49): 33927-44, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25331948

RESUMO

We have previously shown that the L-type calcium channel (LCC) antagonist nilvadipine reduces brain amyloid-ß (Aß) accumulation by affecting both Aß production and Aß clearance across the blood-brain barrier (BBB). Nilvadipine consists of a mixture of two enantiomers, (+)-nilvadipine and (-)-nilvadipine, in equal proportion. (+)-Nilvadipine is the active enantiomer responsible for the inhibition of LCC, whereas (-)-nilvadipine is considered inactive. Both nilvadipine enantiomers inhibit Aß production and improve the clearance of Aß across the BBB showing that these effects are not related to LCC inhibition. In addition, treatment of P301S mutant human Tau transgenic mice (transgenic Tau P301S) with (-)-nilvadipine reduces Tau hyperphosphorylation at several Alzheimer disease (AD) pertinent epitopes. A search for the mechanism of action of (-)-nilvadipine revealed that this compound inhibits the spleen tyrosine kinase (Syk). We further validated Syk as a target-regulating Aß by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aß production and increases the clearance of Aß across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aß and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aß accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. We show that Syk inhibition induces an increased phosphorylation of the inhibitory Ser-9 residue of glycogen synthase kinase-3ß, a primary Tau kinase involved in Tau phosphorylation, by activating protein kinase A, providing a mechanism explaining the reduction of Tau phosphorylation at GSK3ß-dependent epitopes following Syk inhibition. Altogether our data highlight Syk as a promising target for preventing both Aß accumulation and Tau hyperphosphorylation in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Células CHO , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Cricetulus , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , NF-kappa B/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nifedipino/análogos & derivados , Nifedipino/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Quinase Syk , Proteínas tau/genética
14.
Mol Cell Neurosci ; 56: 255-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831388

RESUMO

Emerging evidence suggests beta-amyloid (Aß) deposition in the Alzheimer's disease (AD) brain is the result of impaired clearance, due in part to diminished Aß transport across the blood-brain barrier (BBB). Recently, modulation of the cannabinoid system was shown to reduce Aß brain levels and improve cognitive behavior in AD animal models. The purpose of the current studies was to investigate the role of the cannabinoid system in the clearance of Aß across the BBB. Using in vitro and in vivo models of BBB clearance, Aß transit across the BBB was examined in the presence of cannabinoid receptor agonists and inhibitors. In addition, expression levels of the Aß transport protein, lipoprotein receptor-related protein1 (LRP1), were determined in the brain and plasma of mice following cannabinoid treatment. Cannabinoid receptor agonism or inhibition of endocannabinoid-degrading enzymes significantly enhanced Aß clearance across the BBB (2-fold). Moreover, cannabinoid receptor inhibition negated the stimulatory influence of cannabinoid treatment on Aß BBB clearance. Additionally, LRP1 levels in the brain and plasma were elevated following cannabinoid treatment (1.5-fold), providing rationale for the observed increase in Aß transit from the brain to the periphery. The current studies demonstrate, for the first time, a role for the cannabinoid system in the transit of Aß across the BBB. These findings provide insight into the mechanism by which cannabinoid treatment reduces Aß burden in the AD brain and offer additional evidence on the utility of this pathway as a treatment for AD.


Assuntos
Peptídeos beta-Amiloides/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Endotélio Vascular/metabolismo , Fragmentos de Peptídeos/farmacocinética , Animais , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transcitose/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
J Pharm Sci ; 102(10): 3838-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897419

RESUMO

Venlafaxine, and to a lesser extent desvenlafaxine, has previously been shown to induce the expression of the drug efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in whole cells and alter the cellular permeability of a known drug efflux probe (rhodamine 123). To validate these in vitro findings, wild-type mice were treated for 4 days with 10 mg/kg venlafaxine or desvenlafaxine, and drug efflux transporter expression was examined in the brain, liver, and intestine. P-gp and BCRP expression was significantly upregulated in the intestine, following a treatment with venlafaxine (2.6- and 6.7-fold, respectively) or desvenlafaxine (2.3- and 4.8-fold, respectively). In addition, venlafaxine increased the BCRP expression in the brain (40%) and liver (60%), whereas desvenlafaxine had no effect on drug efflux transporter levels in these tissues. Using the same treatment paradigm, we observed a minimal impact of either drug on the brain disposition of the known drug efflux probe, topotecan. However, in the periphery, venlafaxine treatment significantly reduced the topotecan oral bioavailability by nearly 40%, whereas the impact of desvenlafaxine on topotecan plasma levels was more modest (23%). These studies demonstrate an effect of venlafaxine on the drug efflux transport activity and the potential for clinical drug-drug interactions.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Cicloexanóis/farmacologia , Cicloexanóis/farmacocinética , Distribuição Tecidual/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Succinato de Desvenlafaxina , Interações Medicamentosas/fisiologia , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Topotecan/sangue , Topotecan/farmacocinética , Regulação para Cima/efeitos dos fármacos , Cloridrato de Venlafaxina
16.
PLoS One ; 8(1): e55392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383175

RESUMO

Anatabine, a naturally occurring alkaloid, is becoming a commonly used human food supplement, taken for its claimed anti-inflammatory properties although this has not yet been reported in human clinical trials. We have previously shown that anatabine does display certain anti-inflammatory properties and readily crosses the blood-brain barrier suggesting it could represent an important compound for mitigating neuro-inflammatory conditions. The present study was designed to determine whether anatabine had beneficial effects on the development of experimental autoimmune encephalomyelitis (EAE) in mice and to precisely determine its underlying mechanism of action in this mouse model of multiple sclerosis (MS). We found that orally administered anatabine markedly suppressed neurological deficits associated with EAE. Analyses of cytokine production in the periphery of the animals revealed that anatabine significantly reduced Th1 and Th17 cytokines known to contribute to the development of EAE. Anatabine appears to significantly suppress STAT3 and p65 NFκB phosphorylation in the spleen and the brain of EAE mice. These two transcription factors regulate a large array of inflammatory genes including cytokines suggesting a mechanism by which anatabine antagonizes pro-inflammatory cytokine production. Additionally, we found that anatabine alleviated the infiltration of macrophages/microglia and astrogliosis and significantly prevented demyelination in the spinal cord of EAE mice. Altogether our data suggest that anatabine may be effective in the treatment of MS and should be piloted in clinical trials.


Assuntos
Alcaloides/uso terapêutico , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Piridinas/uso terapêutico , Administração Oral , Alcaloides/administração & dosagem , Análise de Variância , Animais , Western Blotting , Encefalomielite Autoimune Experimental/patologia , Imuno-Histoquímica , Camundongos , Piridinas/administração & dosagem , Células Th1/metabolismo , Células Th17/metabolismo
17.
J Mol Neurosci ; 49(2): 270-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22890420

RESUMO

Alzheimer's disease (AD) is a neurodegenerative process characterized, in part, by the accumulation of beta-amyloid proteins (Aß) in the brain. Evidence now suggests that the excessive Aß accumulation is the result of impaired clearance from the brain. Recent studies have indicated that retinoid X receptor (RXR) activation stimulates the metabolic clearance of Aß and rapidly reverses Aß-induced behavioral deficits, doing so in an apoE-dependent manner. Previously, we reported that soluble apoE (i.e., not bound to Aß) facilitated Aß transit across the blood-brain barrier (BBB). As Aß clearance from the brain involves both metabolic and BBB-mediated processes, the current studies investigated the impact of RXR stimulation on Aß clearance across the BBB. Treatment with RXR agonists increased Aß clearance across the BBB both in vitro and in vivo. Moreover, this processes appeared to involve apoE as RXR agonism did not stimulate Aß BBB clearance when apoE was absent. Thus, RXR activation could mitigate Aß brain burden by promoting both the metabolic and BBB clearance of Aß, offering a novel approach to the treatment of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores X de Retinoides/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Bexaroteno , Linhagem Celular , Masculino , Camundongos , Camundongos Knockout , Receptores X de Retinoides/agonistas , Tetra-Hidronaftalenos/farmacologia , Transcitose/efeitos dos fármacos
18.
Eur J Pharmacol ; 698(1-3): 145-53, 2013 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-23178521

RESUMO

Previous investigations have demonstrated the anti-inflammatory effects of cholinergic agonists, such as nicotine. In the present study, we investigated the potential anti-inflammatory activity of anatabine, a minor tobacco alkaloid also present in plants of the Solanacea family which displays a chemical structural similarity with nicotine. Our data show that anatabine prevents STAT3 and NFκB phosphorylation induced by lipopolysaccharide (LPS) or TNF-α in SH-SY5Y, HEK293, human microglia and human blood mononuclear cells. Using human whole blood, we found that anatabine prevents IL-1ß production induced by LPS. We assessed anatabine's anti-inflammatory activity in vivo using an acute model of inflammation by challenging wild-type mice with LPS. We observed that anatabine reduces pro-inflammatory cytokine production (IL-6, IL-1ß and TNF-α) in the plasma, kidney and spleen of the animals following the injection of LPS and concomitantly opposes STAT3 phosphorylation induced by LPS in the spleen and kidney. We also investigated the impact of anatabine on neuroinflammation using a transgenic mouse model of Alzheimer's disease (Tg APPsw) that displays elevated cytokine levels in the brain. Following a chronic oral treatment with anatabine, a reduction in brain TNF-α and IL-6 levels compared to untreated Tg APPsw mice was observed. Moreover, an increased STAT3 phosphorylation was detected in the brains of Tg APPsw mice compared to wild-type littermates and was inhibited by anatabine treatment. Overall our data show that the anti-inflammatory activity of anatabine in vitro and in vivo is mediated in part via an inhibition of STAT3 phosphorylation.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Piridinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Alcaloides/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/biossíntese , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Piridinas/uso terapêutico
19.
Neurodegener Dis ; 11(1): 13-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22572854

RESUMO

BACKGROUND: While apolipoprotein E4 (apoE4) is highly correlated with the development of Alzheimer's disease (AD), its role in AD pathology and, in particular, beta-amyloid (Aß) removal from the brain, is not clearly defined. OBJECTIVE: To elucidate the influence of apoE on the clearance of Aß across the blood-brain barrier (BBB). METHODS: Aß(1-42) was intracerebrally administered to transgenic mice expressing human apoE isoforms and examined in the periphery. RESULTS: apoE3 and apoE4 mice had 5 times and 2 times, respectively, more Aß(1-42) appearing in the plasma than wild-type or apoE knockout mice, indicating an enhanced clearance of Aß from the brain to the periphery. In vitro, unbound basolateral apoE3 (i.e., not bound to Aß), and to a lesser extent unbound apoE4, at concentrations ≤10 nM facilitated basolateral-to-apical fluorescein-Aß(1-42) transcytosis across a BBB model, while apoE isoforms bound to Aß significantly disrupted Aß transcytosis. Additionally, following apical exposure to the BBB model, we found that apoE4 bound to Aß is able to penetrate the BBB more readily than apoE3 bound to Aß and does so via the RAGE (receptor for advanced glycation end products) transporter. CONCLUSION: These studies indicate a multifaceted, isoform-dependent role for apoE in the exchange of Aß across the BBB and may partially explain the association of apoE4 and Aß brain accumulation in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/fisiologia , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Animais , Apolipoproteína E4/farmacologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/farmacologia , Encéfalo/anatomia & histologia , Células Cultivadas , Células Endoteliais , Fibronectinas/administração & dosagem , Lateralidade Funcional , Proteína HMGB1/farmacologia , Humanos , Técnicas In Vitro , Injeções Intraventriculares , Camundongos , Camundongos Knockout , Microvasos/citologia , Fragmentos de Peptídeos/administração & dosagem , Transcitose/efeitos dos fármacos , Transcitose/genética
20.
Eur J Pharmacol ; 670(2-3): 384-91, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21958873

RESUMO

Brain Aß accumulation represents a key pathological hallmark in Alzheimer's disease. In this study, we investigated the impact of anatabine, a minor alkaloid present in plants of the Solanacea family on Aß production in vitro using a cell line overexpressing the human amyloid precursor protein (APP) and in vivo using a transgenic mouse model of Alzheimer's disease. In vitro, anatabine lowers Aß1₋40 and Aß1₋42 levels in a dose dependent manner and reduces sAPPß production without impacting sAPPα levels suggesting that anatabine lowers Aß production by mainly impacting the ß-cleavage of APP. Additionally, we show that anatabine lowers NFκB activation at doses that inhibit Aß production in vitro. Since NFκB is known to regulate BACE-1 expression (the rate limiting enzyme responsible for Aß production), we determined the impact of anatabine on BACE-1 transcription. We show that anatabine inhibits BACE-1 transcription and reduces BACE-1 protein levels in human neuronal like SHSY-5Y cells suggesting that the Aß lowering properties of anatabine are mediated via a regulation of BACE-1 expression. In vivo, we show that an acute treatment with anatabine for four days significantly lowers brain soluble Aß1₋40 and Aß1₋42 levels in a transgenic mouse model of Alzheimer's disease. Altogether our data suggest that anatabine may represent an interesting compound for regulating brain Aß accumulation.


Assuntos
Alcaloides/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Piridinas/farmacologia , Doença de Alzheimer/sangue , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...