Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 15(8): 107, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346787

RESUMO

INTRODUCTION: Biotransformation constitutes an important aspect of the drug discovery process, to mimic human metabolism of active principal ingredient but also to generate new chemical entities. Several microorganisms such as fungi are well adapted to transform drug, whether at the stage of screening or for large-scale production. OBJECTIVES: Due to the high chemical complexity of the biotransformation media, it seems attractive to develop new analytical strategies in order to guarantee an adequate monitoring and optimize the production of targeted metabolites or drug candidates. METHODS: The model designed for this purpose concerns the biotransformation of a potential histamine H3 antagonist (S38093) in order to produce phase I metabolites. MS, NMR and chemometrics tools were used to monitor biotransformation reactions. RESULTS: First, a screening of eleven filamentous fungi was carried out by UHPLC-UV-MS and principal component analysis to select the best candidates. Subsequently, MS (tR, m/z) and NMR (1H, JRES) fingerprints associated with Consensus OPLS-DA multiblock approach were used to better understand the bioreaction mechanisms in terms of nutrient consumption and hydroxylated metabolites production. Then an experimental design was set up to optimize the production conditions (pH, kinetic) of these target metabolites. CONCLUSION: This study demonstrates how NMR and MS acquisitions combined with chemometric methods offer an innovative analytical strategy to have a grasp of functionalization mechanisms, and identify metabolites and other compounds (amino acids, nutrients, etc.) in complex biotransformation mixtures.


Assuntos
Fungos/metabolismo , Antagonistas dos Receptores Histamínicos H3/metabolismo , Metabolômica , Biotransformação , Fungos/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Análise de Componente Principal
2.
Bioorg Med Chem Lett ; 23(7): 2217-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23434224

RESUMO

During the course of our study on the innovative ligand for nicotinic acetylcholinergic receptors, LNAChR, and in order to assess activity and toxicity profiles of the drug's metabolites, synthesis of the main metabolites was undertaken. This synthesis work was done in parallel by organic chemistry and by biotransformation of LNAChR. Filamentous fungus Aspergillus alliaceus (NRRL 315) neatly afforded three of the main metabolites, one of which arose from a very unexpected and very uncommon rearrangement.


Assuntos
Compostos de Anilina/metabolismo , Piridinas/metabolismo , Compostos de Anilina/química , Aspergillus/metabolismo , Estrutura Molecular , Piridinas/química , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...