Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325885

RESUMO

This study reports a relationship between Akt3 expression and tissue-specific regulation of the pI3K/Akt/mTOR signaling pathway by copaiba essential oil. Akt3, a protein kinase B isoform important for the regulation of neuronal development, exhibited differential expression levels in cells of various origins. In neuronal and microglial cells, where Akt3 is present, copaiba essential oil positively regulated the pI3K/Akt/mTOR signaling pathway. In contrast, in liver cells and T lymphocytes, where Akt3 is absent, copaiba essential oil negatively regulated the pI3K/Akt/mTOR signaling pathway. The expression of Akt3 via plasmid DNA in liver cells led to positive regulatory effects by copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. In contrast, inhibition of Akt3 expression in neuronal cells via small interfering RNA molecules targeting Akt3 transcripts abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Interestingly, Akt3 expression did not impact the regulatory effects of copaiba essential oil on other signaling pathways. For example, copaiba essential oil consistently upregulated the MAPK and JAK/STAT signaling pathways in all evaluated cell types, independent of the Akt3 expression level. Collectively, the data indicated that Akt3 expression was required for the positive regulatory effects of copaiba essential oil, specifically on the pI3K/Akt/mTOR signaling pathway.


Assuntos
Fabaceae/química , Regulação da Expressão Gênica/efeitos dos fármacos , Óleos Voláteis/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular Tumoral , Humanos , Janus Quinases/metabolismo , Óleos Voláteis/química , Especificidade de Órgãos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218156

RESUMO

This study examined the biological activities of copaiba essential oil via measurement of its effects on signaling pathways in the SH-SY5Y neuronal cell line. Nanofluidic proteomic technologies were deployed to measure the phosphorylation of biomarker proteins within the signaling cascades. Interestingly, copaiba essential oil upregulated the pI3K/Akt/mTOR, MAPK, and JAK/STAT signaling pathways in neuronal cells. The effects of copaiba essential oil peaked at 30 min post-treatment, with a half-maximal effective concentration (EC50) of approximately 80 ng/mL. Treatment with cannabinoid receptor 2 (CB2) agonist AM1241 or the inverse agonist BML190 abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Surprisingly, copaiba essential oil also activated the apoptosis signaling pathway and reduced the viability of SH-SY5Y cells with an EC50 of approximately 400 ng/mL. Furthermore, ß-caryophyllene, a principal constituent of copaiba essential oil, downregulated the pI3K/Akt/mTOR signaling pathway. Taken together, the findings indicated that copaiba essential oil upregulated signaling pathways associated with cell metabolism, growth, immunity, and apoptosis. The biological activities of copaiba essential oil were determined to be fast acting, CB2 mediated, and dependent on multiple chemical constituents of the oil. Nanofluidic proteomics provided a powerful means to assess the biological activities of copaiba essential oil.


Assuntos
Fabaceae/química , Neuroblastoma/metabolismo , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Neuroblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Nutrients ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019055

RESUMO

This study used nanofluidic protein posttranslational modification (PTM) profiling to measure the effects of six cannabidiol (CBD) oils and isolated CBD on the signaling pathways of a cultured SH-SY5Y neuronal cell line. Chemical composition analysis revealed that all CBD oils met the label claims and legal regulatory limit regarding the CBD and tetrahydrocannabinol (THC) contents, respectively. Isolated CBD was cytotoxic, with an effective concentration (EC50) of 40 µM. In contrast, the CBD oils had no effect on cell viability at CBD concentrations exceeding 1.2 mM. Interestingly, only an unadulterated CBD oil had strong and statistically significant suppressive effects on the pI3K/Akt/mTOR signaling pathway with an EC50 value of 143 µM and a slow-acting timescale requiring hours. Systematic profiling of twenty-six proteins, which served as biomarkers for nine signaling pathways, revealed that the unadulterated CBD oil downregulated seven signaling pathways but had no measurable effect on the other two signaling pathways. The remaining CBD oils, which were adulterated, and isolated CBD had weak, variable, or undetectable effects on neuronal signaling pathways. Our data clearly showed that adulteration diminished the biological activities of CBD oils. In addition, nanofluidic protein PTM profiling provided a robust means for potency assessment of CBD oils.


Assuntos
Canabidiol/farmacologia , Óleos de Plantas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31239862

RESUMO

Many essential oils (EOs) have anticonvulsant activity and might benefit people with epilepsy. Lemongrass, lavender, clove, dill, and other EOs containing constituents such as asarone, carvone, citral, eugenol, or linalool are good candidates for evaluation as antiepileptic drugs. On the other hand, some EOs have convulsant effects and may trigger seizures in both epileptic and healthy individuals. Internal use of EOs like sage, hyssop, rosemary, camphor, pennyroyal, eucalyptus, cedar, thuja, and fennel can cause epileptic seizures because they contain thujone, 1,8-cineole, camphor, or pinocamphone, which have been identified as convulsive agents. While more research is needed to confirm their mechanisms of action, it appears that the convulsant or anticonvulsant properties of essential oils are largely due to (1) their ability to modulate the GABAergic system of neurotransmission and (2) their capacity to alter ionic currents through ion channels. This review presents a systematic analysis of the current research on EOs and epilepsy, including human case studies, animal models, and in vitro studies.

5.
Phytother Res ; 32(9): 1848-1852, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29770504

RESUMO

Very few studies have investigated the biological activities of black pepper essential oil (BPEO) in human cells. Therefore, in the current study, we examined the biological activities of BPEO in cytokine-stimulated human dermal fibroblasts by analyzing the levels of 17 important protein biomarkers pertinent to inflammation and tissue remodeling. BPEO exhibited significant antiproliferative activity in these skin cells and significantly inhibited the production of Collagen I, Collagen III, and plasminogen activator inhibitor 1. In addition, we studied the effect of BPEO on the regulation of genome-wide expression and found that BPEO diversely modulated global gene expression. Further analysis showed that BPEO affected many important genes and signaling pathways closely related to metabolism, inflammation, tissue remodeling, and cancer signaling. This study is the first to provide evidence of the biological activities of BPEO in human dermal fibroblasts. The data suggest that BPEO possesses promising potential to modulate the biological processes of tissue remodeling, wound healing, and metabolism. Although further research is required, BPEO appears to be a good therapeutic candidate for a variety of health conditions including wound care and metabolic diseases. Research into the biological and pharmacological mechanisms of action of BPEO and its major active constituents is recommended.


Assuntos
Fibroblastos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Piper nigrum/química , Extratos Vegetais/farmacologia , Biomarcadores , Células CACO-2 , Citocinas/metabolismo , Humanos , Transdução de Sinais
6.
Biochim Open ; 5: 1-7, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29450150

RESUMO

Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...