Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1001530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063947

RESUMO

Background: Coagulopathy is one of the main triggers of severity and worsening of Coronavirus disease 2019 (COVID-19) particularly in critically ill patients. D-dimer has been widely used to detect COVID-19 coagulation disorders and has been correlated with outcomes such as disease severity and in-hospital mortality. Involvement of other fibrin degradation products, particularly fibrin monomers (FM), remains an ongoing question. Methods: We performed a monocentric study of adult patients with COVID-19, who were admitted either in the medical ward (MW) or in the intensive care unit (ICU) and who had FM measurements performed on them during the first wave of COVID-19 outbreak. We analyzed the positivity of FM levels (FM > 7 µg/mL) to assess the ability of FM monitoring during the first days of hospitalization to predict COVID-19 outcomes. Results: In our cohort, 935 FM measurements were performed in 246 patients during their first 9 days of hospitalization. During patient follow-up, the FM levels were higher in patients admitted directly to the ICU than in those admitted to the MW. Moreover, we observed significantly increased levels of FM in patients when the data were stratified for in-hospital mortality. At hospital admission, only 27 (11%) patients displayed a positive value for FM; this subgroup did not differ from other patients in terms of severity (indicated by ICU referral at admission) or in-hospital mortality. When analyzing FM positivity in the first 9 days of hospitalization, we found that 37% of patients had positive FM at least once during hospitalization and these patients had increased in-hospital mortality (p = 0.001). Thus, we used non-adjusted Kaplan-Meier curves for in-hospital mortality according to FM positivity during hospitalization and we observed a statistically significant difference for in-hospital mortality (hazard ratio = 1.48, 95% CI: 1.25-1.76, p < 0.001). However, we compared the AUC of FM positivity associated with a ratio of D-dimer >70% and found that this combined receiver operating characteristic (ROC) curve was superior to the FM positivity ROC curve alone. Conclusion: Monitoring of FM positivity in hospitalized patients with COVID-19 could be a reliable and helpful tool to predict the worsening condition and mortality of COVID-19.

3.
Front Cardiovasc Med ; 9: 935333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148049

RESUMO

Background: The decision for withholding and withdrawing of life-sustaining treatments (LSTs) in COVID-19 patients is currently based on a collegial and mainly clinical assessment. In the context of a global pandemic and overwhelmed health system, the question of LST decision support for COVID-19 patients using prognostic biomarkers arises. Methods: In a multicenter study in 24 French hospitals, 2878 COVID-19 patients hospitalized in medical departments from 26 February to 20 April 2020 were included. In a propensity-matched population, we compared the clinical, biological, and management characteristics and survival of patients with and without LST decision using Student's t-test, the chi-square test, and the Cox model, respectively. Results: An LST was decided for 591 COVID-19 patients (20.5%). These 591 patients with LST decision were secondarily matched (1:1) based on age, sex, body mass index, and cancer history with 591 COVID-19 patients with no LST decision. The patients with LST decision had significantly more cardiovascular diseases, such as high blood pressure (72.9 vs. 66.7%, p = 0.02), stroke (19.3 vs. 11.1%, p < 0.001), renal failure (30.4 vs. 17.4%, p < 0.001), and heart disease (22.5 vs. 14.9%, p < 0.001). Upon admission, LST patients were more severely attested by a qSOFA score ≥2 (66.5 vs. 58.8%, p = 0.03). Biologically, LST patients had significantly higher values of D-dimer, markers of heart failure (BNP and NT-pro-BNP), and renal damage (creatinine) (p < 0.001). Their evolutions were more often unfavorable (in-hospital mortality) than patients with no LST decision (41.5 vs. 10.3%, p < 0.001). By combining the three biomarkers (D-dimer, BNP and/or NT-proBNP, and creatinine), the proportion of LST increased significantly with the number of abnormally high biomarkers (24, 41.3, 48.3, and 60%, respectively, for none, one, two, and three high values of biomarkers, trend p < 0.01). Conclusion: The concomitant increase in D-dimer, BNP/NT-proBNP, and creatinine during the admission of a COVID-19 patient could represent a reliable and helpful tool for LST decision. Circulating biomarker might potentially provide additional information for LST decision in COVID-19.

4.
Angiogenesis ; 24(3): 407-411, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974165

RESUMO

BACKGROUND: Microthrombosis is a hallmark of COVID-19. We previously described von willebrand factor (VWF) and their high molecular weight multimers (HMWMs) as potential trigger of microthrombosis. OBJECTIVES: Investigate VWF activity with collagen-binding assay and ADAMTS13 in COVID-19. METHODS AND RESULTS: Our study enrolled 77 hospitalized COVID-19 patients including 37 suffering from a non-critical form and 40 with critical form. Plasma levels of VWF collagen-binding ability (VWF:CB) and ADAMTS13 activity (ADAMTS13:Act) were measured in the first 48 hours following admission. VWF:CB was increased in critical (631% IQR [460-704]) patients compared to non-critical patients (259% [235-330], p < 0.005). VWF:CB was significantly associated (r = 0.564, p < 0.001) with HMWMs. Moreover, median ADAMTS13:Act was lower in critical (64.8 IU/dL IQR 50.0-77.7) than non-critical patients (85.0 IU/dL IQR 75.8-94.7, p < 0.001), even if no patients displayed majors deficits. VWF:Ag-to-ADAMTS13:Act ratio was highly associated with VWF:CB (r = 0.916, p < 0.001). Moreover, VWF:CB level was highly predictive of COVID-19 in-hospital mortality as shown by the ROC curve analysis (AUC = 0.92, p < 0.0001) in which we identified a VWF:CB cut-off of 446% as providing the best predictor sensitivity-specificity balance. We confirmed this cut-off thanks to a Kaplan-Meier estimator analysis (log-rank p < 0.001) and a Cox-proportional Hazard model (HR = 49.1, 95% CI 1.81-1328.2, p = 0.021) adjusted on, BMI, C-reactive protein, and D-dimer levels. CONCLUSION: VWF:CB levels could summarize both VWF increased levels and hyper-reactivity subsequent to ADAMTS13 overflow and, therefore, be a valuable and easy to perform clinical biomarker of microthrombosis and COVID-19 severity.


Assuntos
Proteína ADAMTS13/sangue , COVID-19/sangue , COVID-19/mortalidade , Pandemias , SARS-CoV-2 , Fator de von Willebrand/metabolismo , Idoso , Biomarcadores/sangue , Colágeno/metabolismo , Estudos Transversais , Feminino , Mortalidade Hospitalar , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Paris/epidemiologia , Modelos de Riscos Proporcionais , Ligação Proteica , Índice de Gravidade de Doença
5.
J Thromb Haemost ; 19(7): 1823-1830, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830623

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with vascular inflammation and endothelial injury. OBJECTIVES: To correlate circulating angiogenic markers vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), and fibroblast growth factor 2 (FGF-2) to in-hospital mortality in COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with COVID-19 infection were enrolled. VEGF-A, PlGF, and FGF-2 were measured in each patient ≤48 h following admission. RESULTS: The study enrolled 237 patients with suspected COVID-19: 208 patients had a positive diagnostic for COVID-19, of whom 23 were mild outpatients and 185 patients hospitalized after admission. Levels of VEGF-A, PlGF, and FGF-2 significantly increase with the severity of the disease (P < .001). Using a logistic regression model, we found a significant association between the increase of FGF-2 or PlGF and mortality (odds ratio [OR] 1.11, 95% confidence interval [CI; 1.07-1.16], P < .001 for FGF-2 and OR 1.07 95% CI [1.04-1.10], P < .001 for PlGF) while no association were found for VEGF-A levels. Receiver operating characteristic curve analysis was performed and we identified PlGF above 30 pg/ml as the best predictor of in-hospital mortality in COVID-19 patients. Survival analysis for PlGF confirmed its interest for in-hospital mortality prediction, by using a Kaplan-Meier survival curve (P = .001) and a Cox proportional hazard model adjusted to age, body mass index, D-dimer, and C-reactive protein (3.23 95% CI [1.29-8.11], P = .001). CONCLUSION: Angiogenic factor PlGF is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that PlGF blocking strategies could be a new interesting therapeutic approach in COVID-19.


Assuntos
COVID-19 , Fator A de Crescimento do Endotélio Vascular , Adulto , Biomarcadores , Feminino , Mortalidade Hospitalar , Humanos , Fator de Crescimento Placentário , SARS-CoV-2
6.
Angiogenesis ; 24(3): 505-517, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33449299

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with endotheliitis and microthrombosis. OBJECTIVES: To correlate endothelial dysfunction to in-hospital mortality in a bi-centric cohort of COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with laboratory-confirmed COVID-19 were enrolled. A panel of endothelial biomarkers and von Willebrand factor (VWF) multimers were measured in each patient ≤ 48 h following admission. RESULTS: Study enrolled 208 COVID-19 patients of whom 23 were mild outpatients and 189 patients hospitalized after admission. Most of endothelial biomarkers tested were found increased in the 89 critical patients transferred to intensive care unit. However, only von Willebrand factor antigen (VWF:Ag) scaled according to clinical severity, with levels significantly higher in critical patients (median 507%, IQR 428-596) compared to non-critical patients (288%, 230-350, p < 0.0001) or COVID-19 outpatients (144%, 133-198, p = 0.007). Moreover, VWF high molecular weight multimers (HMWM) were significantly higher in critical patients (median ratio 1.18, IQR 0.86-1.09) compared to non-critical patients (0.96, 1.04-1.39, p < 0.001). Among all endothelial biomarkers measured, ROC curve analysis identified a VWF:Ag cut-off of 423% as the best predictor for in-hospital mortality. The accuracy of VWF:Ag was further confirmed in a Kaplan-Meier estimator analysis and a Cox proportional Hazard model adjusted on age, BMI, C-reactive protein and D-dimer levels. CONCLUSION: VWF:Ag is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that VWF, including excess of HMWM forms, drives microthrombosis in COVID-19.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Pandemias , SARS-CoV-2 , Fator de von Willebrand/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/química , COVID-19/fisiopatologia , Estudos Transversais , Endotélio Vascular/fisiopatologia , Feminino , Mortalidade Hospitalar , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Peso Molecular , Paris/epidemiologia , Modelos de Riscos Proporcionais , Multimerização Proteica , Índice de Gravidade de Doença , Trombose/sangue , Trombose/etiologia , Fator de von Willebrand/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...