Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 23(12): e30291, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34904950

RESUMO

BACKGROUND: The long-term management of irritable bowel syndrome (IBS) poses many challenges. In short-term studies, eHealth interventions have been demonstrated to be safe and practical for at-home monitoring of the effects of probiotic treatments and a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs). IBS has been linked to alterations in the microbiota. OBJECTIVE: The aim of this study was to determine whether a web-based low-FODMAP diet (LFD) intervention and probiotic treatment were equally good at reducing IBS symptoms, and whether the response to treatments could be explained by patients' microbiota. METHODS: Adult IBS patients were enrolled in an open-label, randomized crossover trial (for nonresponders) with 1 year of follow-up using the web application IBS Constant Care (IBS CC). Patients were recruited from the outpatient clinic at the Department of Gastroenterology, North Zealand University Hospital, Denmark. Patients received either VSL#3 for 4 weeks (2 × 450 billion colony-forming units per day) or were placed on an LFD for 4 weeks. Patients responding to the LFD were reintroduced to foods high in FODMAPs, and probiotic responders received treatments whenever they experienced a flare-up of symptoms. Treatment response and symptom flare-ups were defined as a reduction or increase, respectively, of at least 50 points on the IBS Severity Scoring System (IBS-SSS). Web-based ward rounds were performed daily by the study investigator. Fecal microbiota were analyzed by shotgun metagenomic sequencing (at least 10 million 2 × 100 bp paired-end sequencing reads per sample). RESULTS: A total of 34 IBS patients without comorbidities and 6 healthy controls were enrolled in the study. Taken from participating subjects, 180 fecal samples were analyzed for their microbiota composition. Out of 21 IBS patients, 12 (57%) responded to the LFD and 8 (38%) completed the reintroduction of FODMAPs. Out of 21 patients, 13 (62%) responded to their first treatment of VSL#3 and 7 (33%) responded to multiple VSL#3 treatments. A median of 3 (IQR 2.25-3.75) probiotic treatments were needed for sustained symptom control. LFD responders were reintroduced to a median of 14.50 (IQR 7.25-21.75) high-FODMAP items. No significant difference in the median reduction of IBS-SSS for LFD versus probiotic responders was observed, where for LFD it was -126.50 (IQR -196.75 to -76.75) and for VSL#3 it was -130.00 (IQR -211.00 to -70.50; P>.99). Responses to either of the two treatments were not able to be predicted using patients' microbiota. CONCLUSIONS: The web-based LFD intervention and probiotic treatment were equally efficacious in managing IBS symptoms. The response to treatments could not be explained by the composition of the microbiota. The IBS CC web application was shown to be practical, safe, and useful for clinical decision making in the long-term management of IBS. Although this study was underpowered, findings from this study warrant further research in a larger sample of patients with IBS to confirm these long-term outcomes. TRIAL REGISTRATION: ClinicalTrials.gov NCT03586622; https://clinicaltrials.gov/ct2/show/NCT03586622.


Assuntos
Síndrome do Intestino Irritável , Microbiota , Probióticos , Estudos Cross-Over , Dieta , Humanos , Internet , Síndrome do Intestino Irritável/terapia , Probióticos/uso terapêutico
2.
Bioinformatics ; 37(18): 3064-3066, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33682879

RESUMO

MOTIVATION: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of thermodynamic variables. RESULTS: We present multiTFA, a Python implementation of our framework. We evaluated our application using the core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from reversible to irreversible. AVAILABILITY AND IMPLEMENTATION: Our framework along with documentation is available on https://github.com/biosustain/multitfa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Escherichia coli , Software , Termodinâmica , Documentação , Incerteza
4.
Nat Commun ; 10(1): 3586, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395883

RESUMO

Genome-scale metabolic models (GEMs) represent extensive knowledgebases that provide a platform for model simulations and integrative analysis of omics data. This study introduces Yeast8 and an associated ecosystem of models that represent a comprehensive computational resource for performing simulations of the metabolism of Saccharomyces cerevisiae--an important model organism and widely used cell-factory. Yeast8 tracks community development with version control, setting a standard for how GEMs can be continuously updated in a simple and reproducible way. We use Yeast8 to develop the derived models panYeast8 and coreYeast8, which in turn enable the reconstruction of GEMs for 1,011 different yeast strains. Through integration with enzyme constraints (ecYeast8) and protein 3D structures (proYeast8DB), Yeast8 further facilitates the exploration of yeast metabolism at a multi-scale level, enabling prediction of how single nucleotide variations translate to phenotypic traits.


Assuntos
Biologia Computacional , Metaboloma/genética , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Genômica/métodos , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Mutação , Fenótipo , Saccharomyces cerevisiae/genética
5.
J R Soc Interface ; 9(77): 3426-35, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22896565

RESUMO

Few-node subgraphs are the smallest collective units in a network that can be investigated. They are beyond the scale of individual nodes but more local than, for example, communities. When statistically over- or under-represented, they are called network motifs. Network motifs have been interpreted as building blocks that shape the dynamic behaviour of networks. It is this promise of potentially explaining emergent properties of complex systems with relatively simple structures that led to an interest in network motifs in an ever-growing number of studies and across disciplines. Here, we discuss artefacts in the analysis of network motifs arising from discrepancies between the network under investigation and the pool of random graphs serving as a null model. Our aim was to provide a clear and accessible catalogue of such incongruities and their effect on the motif signature. As a case study, we explore the metabolic network of Escherichia coli and show that only by excluding ever more artefacts from the motif signature a strong and plausible correlation with the essentiality profile of metabolic reactions emerges.


Assuntos
Biologia Computacional/métodos , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Interpretação Estatística de Dados , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...