Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 6(4): 605-11, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262474

RESUMO

In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod's long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. We propose a mechanism that accounts for the observed sublimation behavior based on the terrace-ledge-kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.

2.
J Am Chem Soc ; 136(38): 13319-25, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25137433

RESUMO

Although the vast majority of hydrocarbon fuels and products are presently derived from petroleum, there is much interest in the development of routes for synthesizing these same products by hydrogenating CO2. The simplest hydrocarbon target is methane, which can utilize existing infrastructure for natural gas storage, distribution, and consumption. Electrochemical methods for methanizing CO2 currently suffer from a combination of low activities and poor selectivities. We demonstrate that copper nanoparticles supported on glassy carbon (n-Cu/C) achieve up to 4 times greater methanation current densities compared to high-purity copper foil electrodes. The n-Cu/C electrocatalyst also exhibits an average Faradaic efficiency for methanation of 80% during extended electrolysis, the highest Faradaic efficiency for room-temperature methanation reported to date. We find that the level of copper catalyst loading on the glassy carbon support has an enormous impact on the morphology of the copper under catalytic conditions and the resulting Faradaic efficiency for methane. The improved activity and Faradaic efficiency for methanation involves a mechanism that is distinct from what is generally thought to occur on copper foils. Electrochemical data indicate that the early steps of methanation on n-Cu/C involve a pre-equilibrium one-electron transfer to CO2 to form an adsorbed radical, followed by a rate-limiting non-electrochemical step in which the adsorbed CO2 radical reacts with a second CO2 molecule from solution. These nanoscale copper electrocatalysts represent a first step toward the preparation of practical methanation catalysts that can be incorporated into membrane-electrode assemblies in electrolyzers.

3.
J Vis Exp ; (82): e50731, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24378820

RESUMO

We demonstrate a method for the synthesis of multicomponent nanostructures consisting of CdS and CdSe with rod and tetrapod morphologies. A seeded synthesis strategy is used in which spherical seeds of CdSe are prepared first using a hot-injection technique. By controlling the crystal structure of the seed to be either wurtzite or zinc-blende, the subsequent hot-injection growth of CdS off of the seed results in either a rod-shaped or tetrapod-shaped nanocrystal, respectively. The phase and morphology of the synthesized nanocrystals are confirmed using X-ray diffraction and transmission electron microscopy, demonstrating that the nanocrystals are phase-pure and have a consistent morphology. The extinction coefficient and quantum yield of the synthesized nanocrystals are calculated using UV-Vis absorption spectroscopy and photoluminescence spectroscopy. The rods and tetrapods exhibit extinction coefficients and quantum yields that are higher than that of the bare seeds. This synthesis demonstrates the precise arrangement of materials that can be achieved at the nanoscale by using a seeded synthetic approach.


Assuntos
Compostos de Cádmio/síntese química , Cádmio/química , Nanotecnologia/métodos , Nanotubos/química , Compostos de Selênio/síntese química , Compostos de Cádmio/química , Compostos de Selênio/química , Espectrofotometria Ultravioleta/métodos
4.
J Am Chem Soc ; 134(49): 19977-80, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23190283

RESUMO

III-V nanocrystals displaying high crystallinity and low size dispersity are difficult to access by direct synthesis from molecular precursors. Here, we demonstrate that cation exchange of cadmium pnictide nanocrystals with group 13 ions yields monodisperse, crystalline III-V nanocrystals, including GaAs, InAs, GaP, and InP. This report highlights the versatility of cation exchange for accessing nanocrystals with covalent lattices.


Assuntos
Arsenicais/síntese química , Gálio/química , Índio/química , Nanopartículas/química , Fósforo/química , Arsenicais/química , Cádmio/química , Íons/química , Nanopartículas/classificação
5.
J Am Chem Soc ; 134(9): 3946-9, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22339157

RESUMO

We used a fluorogenic reaction to study in conjunction the photocatalytic properties for both active sites (trapped photogenerated electrons and holes) on individual Sb-doped TiO(2) nanorods with single-molecule fluorescence microscopy. It was found that active sites around trapped holes show higher activity, stronger binding ability, and a different dissociation mechanism for the same substrate and product molecules in comparison with the active sites around trapped electrons. These differences could be elucidated by a model involving the charged microenvironments around the active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...