Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 844: 157175, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35803424

RESUMO

Trees play a pivotal role in the urban environment alleviating the negative impacts of urbanization, and for this reason, local governments have promoted strongly tree planting policies. However, poor soil quality and neglect tree maintenance (e.g., irrigation and fertilization) can seriously mine the plant health status during the tree establishment phase. The use of biochar to provide long-lasting C to the soil and, at the same time, improving soil properties (e.g., improved water holding capacity), soil enzymes activities and NPK concentrations, is a promising research field. Therefore, with a two-step experiment, the study aimed to assay the physiological responses of a commonly used urban tree species (Tilia × europaea L.) to 1.5 % (w/w) biochar amendment (B), and secondly, to assess the ability of trees, grown in biochar amended soil, to tolerate a period of drought. Biochar amendment increased P and K availability in the soil, resulting in higher P and K concentrations in B than control leaves, according to the leaf stage. This induced B trees, higher values in both total biomass than controls (+22 %) in well-watered plants. Moreover, the higher water availability in soil amended with biochar helped B trees to tolerate water stress, with better leaf photosynthetic performances and a faster recovery than stressed controls after the re-watering. This study highlights the dual function of the biochar, improving CO2 sequestration and soil properties, and at the same time, enhancing plant physiological responses to environmental constraints. The use of biochar at the tree planting, especially in an urban environment, is a feasible and environmentally sustainable strategy to improve the success during the tree establishment phase.


Assuntos
Solo , Árvores , Sequestro de Carbono , Carvão Vegetal/farmacologia
2.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616250

RESUMO

Natural products such as wood distillate (WD) are promising alternatives to xenobiotic products in conventional agriculture and are necessary in organic farming. A field study gave insight into the effectiveness of WD applied as foliar spray (F-WD), soil irrigation (S-WD), and their combination as growth promoters for field beans. The soil fertility and quality parameters, plant growth, nutrient uptake, and resource partitioning within plants were evaluated. In a pot trial, we tested the effect of S-WD on root nodule initiation and growth. S-WD increased DOC and microbial biomass by approximately 10%, prompted enzyme activities, and increased nitrate and available phosphorus in soil, without affecting the number and growth of nodules in field beans. In contrast, the F-WD slightly reduced the DOC, exerted a lower stimulation on soil enzymes, and lowered the soil effect in the combined distribution. In field beans, the F-WD reduced the stem height but increased the number of pods per stem; S-WD increased the N and P concentrations of leaves and the N concentration of the pods. Moreover, all WD treatments retarded plant senescence. The WD revealed itself to be promising as a growth promoter for grain legumes, but further research is needed to understand the interference between the combined soil and foliar applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...