Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10567-10581, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38828994

RESUMO

Direct air capture with CO2 storage (DACCS) is among the carbon dioxide removal (CDR) options, with the largest gap between current deployment and needed upscaling. Here, we present a geospatial analysis of the techno-economic performance of large-scale DACCS deployment in Europe using two performance indicators: CDR costs and potential. Different low-temperature heat DACCS configurations are considered, i.e., coupled to the national power grid, using waste heat and powered by curtailed electricity. Our findings reveal that the CDR potential and costs of DACCS systems are mainly driven by (i) the availability of energy sources, (ii) the location-specific climate conditions, (iii) the price and GHG intensity of electricity, and (iv) the CO2 transport distance to the nearest CO2 storage location. The results further highlight the following key findings: (i) the limited availability of waste heat, with only Sweden potentially compensating nearly 10% of national emissions through CDR, and (ii) the need for considering transport and storage of CO2 in a comprehensive techno-economic assessment of DACCS. Finally, our geospatial analysis reveals substantial differences between regions due to location-specific conditions, i.e., useful information elements and consistent insights that will contribute to assessment and feasibility studies toward effective DACCS implementation.


Assuntos
Dióxido de Carbono , Europa (Continente)
2.
Nat Commun ; 14(1): 3989, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414843

RESUMO

The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction, however, must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts, here we show that, from a technological standpoint, using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However, with a continuous increase in air traffic, synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively, compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here, we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.


Assuntos
Poluição do Ar , Aviação , Clima , Combustíveis Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...