Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(7): 1303-1315, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34933954

RESUMO

How do animals adopt a given behavioral strategy to solve a recurrent problem when several effective strategies are available to reach the goal? Here we provide evidence that striatal cholinergic interneurons (SCINs) modulate their activity when mice must select between different strategies with similar goal-reaching effectiveness. Using a cell type-specific transgenic murine system, we show that adult SCIN ablation impairs strategy selection in navigational tasks where a goal can be independently achieved by adopting an allocentric or egocentric strategy. SCIN-depleted mice learn to achieve the goal in these tasks, regardless of their appetitive or aversive nature, in a similar way as controls. However, they cannot shift away from their initially adopted strategies, as control mice do, as training progresses. Our results indicate that SCINs are required for shaping the probability function used for strategy selection as experience accumulates throughout training. Thus, SCINs may be critical for the resolution of cognitive conflicts emerging when several strategies compete for behavioral control while adapting to environmental demands. Our findings may increase our understanding about the emergence of perseverative/compulsive traits in neuropsychiatric disorders with a reported SCIN reduction, such as Tourette and Williams syndromes.SIGNIFICANCE STATEMENT Selecting the best suited strategy to solve a problem is vital. Accordingly, available strategies must be compared across multiple dimensions, such as goal attainment effectiveness, cost-benefit trade-off, and cognitive load. The striatum is involved in strategy selection when strategies clearly diverge in their goal attainment capacity; however, its role whenever several strategies can be used for goal reaching-therefore making selection dependent on additional strategy dimensions-remains poorly understood. Here, we show that striatal cholinergic interneurons can signal strategy competition. Furthermore, they are required to adopt a given strategy whenever strategies with similar goal attainment capacity compete for behavioral control. Our study suggests that striatal cholinergic dysfunction may result in anomalous resolution of problems whenever complex cognitive valuations are required.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Resolução de Problemas/fisiologia , Navegação Espacial/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
J Neurosci ; 37(11): 2849-2858, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28193688

RESUMO

The mechanisms underlying social dysfunction in neuropsychiatric conditions such as obsessive-compulsive disorder and Tourette syndrome remain uncertain. However, it is known that dysfunctions in basal ganglia, including a reduced number of striatal cholinergic interneurons (SCIN), are involved in their pathophysiology. To explore the role of SCIN in relation to perseverative behaviors, we characterized a new transgenic mouse model in which inducible ablation of SCIN is achieved with high efficiency in a cell-type- and region-specific manner. Mice were subjected to extensive behavioral testing, including assessment of social behaviors, and corticostriatal functional connectivity was evaluated in vivo Selective SCIN ablation leads to altered social interactions together with exacerbated spontaneously emitted repetitive behaviors. Lesioned mice showed normal motor coordination, balance, and general locomotion. Interestingly, only environmentally driven, but not self-directed, repetitive behaviors were exacerbated in lesioned mice. Remarkably, in mice with SCIN ablation, the normal pattern of social exploration was replayed continuously. The emerging pattern of social interactions is highly predictable and invariant across time. In vivo electrophysiological recordings indicate that SCIN ablation results in an increase of the functional connectivity between different cortical areas and the motor, but not associative, region of the striatum. Our results identify a role of SCIN in suppressing perseverative behaviors, including socially related ones. In sum, SCIN ablation in mice leads to exacerbated ritualistic-like behaviors that affect social performance, providing a link between SCIN dysfunction and the social impairments present in psychiatric disorders.SIGNIFICANCE STATEMENT We sought to uncover the impact of striatal cholinergic interneuron (SCIN) degeneration on perseverative behaviors related to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). We found that extensive SCIN ablation results in exacerbated social interactions, in which normal social contacts were replayed continuously in a highly stereotyped, ritualistic pattern. SCIN ablation also leads to an increase in other spontaneously emitted repetitive behaviors without alteration of motor coordination, balance, or locomotion. Moreover, we identify an increase of functional connectivity between frontal cortical areas and the motor region of the striatum as a putative substrate for the observed behavioral alterations. Therefore, perseveration induced by SCIN ablation extends to social performance as occurs in neuropsychiatric conditions such as OCD and TS.


Assuntos
Potenciais de Ação , Neurônios Colinérgicos , Comportamento Compulsivo/fisiopatologia , Corpo Estriado/fisiopatologia , Interneurônios , Transtornos do Comportamento Social/fisiopatologia , Animais , Comportamento Compulsivo/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/fisiopatologia , Comportamento Social , Transtornos do Comportamento Social/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...