Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(11): 1603-1610, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38404245

RESUMO

A method using dispersive liquid-liquid microextraction (DLLME) prior to high performance liquid chromatography-diode array detection (HPLC-DAD) was developed to determine seven additives from the plastics industry (butylated hydroxytoluene, diisodecyl phthalate, irgafos 168, lawsone, quercetin, triclosan and vitamin E) in seawater samples. These compounds can reach seawater due to direct discharge from wastewater treatment plants and leaching from plastics and microplastics. The extraction was performed using 25 mL of seawater, 500 µL of 1-octanol (extraction solvent) and a stirring step instead of dispersive solvent. Additive concentrations were determined by LC-DAD on a C18 column with a mobile phase of acetonitrile and phosphoric acid aqueous solution (pH 3.5) by gradient elution. The analytical recoveries ranged from 82 to 93% for all compounds, except for lawsone (60%). Repeatability and intermediate precision were adequate with RSD < calculated values following the Horwitz equation at the concentration levels evaluated (0.06 and 0.24 mg L-1). All additives exhibited linear matrix calibration curves (R2 > 0.99). Detection limits ranged from 0.009 to 0.028 mg L-1 and quantification limits ranged from 0.027 to 0.084 mg L-1. Finally, the application of the method to real samples verified the method as accurate and applicable to seawater.

2.
Bull Environ Contam Toxicol ; 105(2): 332-336, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32556692

RESUMO

Since the Directive 2013/39/EU included terbutryn to the list of priority substances of all water bodies, a previous method based on dispersive liquid-liquid micro-extraction (DLLME) for the determination of triazines in seawater has been modified. The main change consisted on the use of tandem mass spectrometry instead of diode array as detection technique. Due to the higher sensitivity of mass detector, sample volume was reduced and extraction solvent volume was optimized. The optimum extraction conditions were 5 mL of sample, 50 µL of 1-octanol and an agitation step instead of disperser solvent. The obtained analytical recoveries (73%-101% with relative standard deviations below 4%) meeting the requirements. The limits of quantification (between 0.016 and 0.021 µg L-1) were more than 10 times lower than the limit set by the European Directive 2013/39/EU for terbutryn (0.34 µg L-1). The proposed method was applied to the determination of the target compounds in seawater samples from A Coruña (Galicia, NW of Spain).


Assuntos
Espectrometria de Massas em Tandem/métodos , Triazinas/análise , Poluentes Químicos da Água/análise , Microextração em Fase Líquida/métodos , Água do Mar/química , Solventes/química , Espanha
3.
ScientificWorldJournal ; 2013: 536369, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24228007

RESUMO

A simple method based on solid-phase extraction combined with liquid chromatography for simultaneous determination of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine, and terbutryn) in surface water samples was developed and validated. Under optimized conditions, 50 mL of water sample was pumped through the Oasis HLB cartridge, and triazines were eluted with 3 mL acetone. Finally the extract was concentrated to dryness, reconstituted with 1 mL methanol : water (1 : 1) and injected into the HPLC-DAD system. The stability of the herbicides on the cartridges at -18 and 4°C was also evaluated, and the recoveries obtained after three weeks of storage were satisfactory for all compounds. The analytical features of the proposed method were satisfactory: repeatability and intermediate precision were <10% and recoveries in spiked river water and seawater samples were higher than 93% for all compounds studied. Limits of quantification (varied from 0.46 to 0.98 µg L⁻¹) were adequately allowing the determination of these compounds at the levels requested by the 2008/105/EC Directive. Finally, this method was applied to the analysis of 50 seawater samples from Galicia (northwest Spain).


Assuntos
Herbicidas/análise , Rios/química , Água do Mar/análise , Extração em Fase Sólida/métodos , Triazinas/análise , Poluentes Químicos da Água/análise , Agricultura , Animais , Cromatografia Líquida de Alta Pressão , Herbicidas/toxicidade , Humanos , Água do Mar/efeitos adversos , Espanha , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/prevenção & controle
4.
J AOAC Int ; 95(5): 1291-310, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23175959

RESUMO

Due to the extensive use of organochlorine pesticides (OCPs) for agricultural purposes and their high persistence and low biodegradability, they have become an important group of contaminants. Detection and quantification of pesticide residues in food, particularly fruits and vegetables, is of growing concern for producers, consumers, and governments. The most widely used pretreatment for the extraction of pesticides in plants is based on solvent extraction liquid-solid extraction (LSE). LSE can be carried out using Soxhlet, shake-flask, homogenization, sonication, and, more recently, microwave-assisted extraction, pressurized liquid extraction, and supercritical fluid extraction. Furthermore, new analytical procedures using the extraction with sorbents, such as solid-phase microextraction, stir bar sorptive extraction, and matrix solid-phase dispersion, have also been used. On the other hand, a wide range of cleanup methods (liquid-liquid extraction, solid-phase extraction, gel permeation chromatography, and dispersive solid-phase extraction; and chromatographic techniques with electron capture detector and mass spectrometry detector; and HPLC with a ultraviolet detector are reported in the literature. This article reviews the applicability, advantages, and disadvantages of various sample preparation techniques (traditional and new techniques) for the analysis of OCPs in different plants and plant materials. It covers more than 15 years of published methods in which pesticide residues have been determined in a wide range of vegetation samples (fruits, horticultural samples, medicinal plants, tree leaves, etc.) by the use of chromatographic techniques after various sample preparation steps. A great number of applications in different plant material are provided. To the best of the authors' knowledge, previously published reviews have not covered as wide and exhaustive range of vegetation matrixes as presented here. A summary of pesticide levels cited in the literature is included.


Assuntos
Hidrocarbonetos Clorados/química , Resíduos de Praguicidas/química , Praguicidas/química , Plantas/química , Técnicas de Química Analítica , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...