Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1363156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953028

RESUMO

Introduction: Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods: We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results: We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.


Assuntos
Proteínas Ligadas por GPI , Herpesvirus Humano 6 , Células Matadoras Naturais , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Herpesvirus Humano 6/imunologia , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Ativação Linfocitária/imunologia , Ligação Proteica , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
2.
PLoS Pathog ; 19(7): e1011032, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498934

RESUMO

Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , SARS-CoV-2 , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Hemaglutininas , Estações do Ano , Esterases , Glicoproteína da Espícula de Coronavírus
3.
bioRxiv ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36482973

RESUMO

Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines. Author Summary: There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.

4.
Cell Rep ; 39(11): 110952, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675811

RESUMO

Sequence homology between SARS-CoV-2 and common-cold human coronaviruses (HCoVs) raises the possibility that memory responses to prior HCoV infection can affect T cell response in COVID-19. We studied T cell responses to SARS-CoV-2 and HCoVs in convalescent COVID-19 donors and identified a highly conserved SARS-CoV-2 sequence, S811-831, with overlapping epitopes presented by common MHC class II proteins HLA-DQ5 and HLA-DP4. These epitopes are recognized by low-abundance CD4 T cells from convalescent COVID-19 donors, mRNA vaccine recipients, and uninfected donors. TCR sequencing revealed a diverse repertoire with public TCRs. T cell cross-reactivity is driven by the high conservation across human and animal coronaviruses of T cell contact residues in both HLA-DQ5 and HLA-DP4 binding frames, with distinct patterns of HCoV cross-reactivity explained by MHC class II binding preferences and substitutions at secondary TCR contact sites. These data highlight S811-831 as a highly conserved CD4 T cell epitope broadly recognized across human populations.


Assuntos
COVID-19 , SARS-CoV-2 , Alelos , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , Epitopos de Linfócito T , Antígenos HLA , Humanos , Receptores de Antígenos de Linfócitos T , Vacinas de mRNA
5.
Eur J Immunol ; 49(8): 1167-1185, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020640

RESUMO

Human herpes virus 6B (HHV-6B) is a widespread virus that infects most people early in infancy and establishes a chronic life-long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV-6B, but antigenic targets and functional characteristics of the CD4 T-cell response are poorly understood. We identified 25 naturally processed MHC-II peptides, derived from six different HHV-6B proteins, and showed that they were recognized by CD4 T-cell responses in HLA-matched donors. The peptides were identified by mass spectrometry after elution from HLA-DR molecules isolated from HHV-6B-infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T-cell responses in vitro. T-cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+ CD4+ , produced IFN-γ, TNF-α, and low levels of IL-2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide-pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long-term control of HHV-6B infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Herpesvirus Humano 6/fisiologia , Infecções por Roseolovirus/imunologia , Apresentação de Antígeno , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Citotoxicidade Imunológica , Mapeamento de Epitopos , Antígeno HLA-DR3/metabolismo , Humanos , Epitopos Imunodominantes , Interferon gama/metabolismo , Ativação Linfocitária , Espectrometria de Massas , Peptídeos/metabolismo
6.
Virol J ; 15(1): 4, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304865

RESUMO

BACKGROUND: Human herpesvirus 6 (HHV-6A and HHV-6B) infection of cell cultures can be measured by different methods, including immunofluorescence microscopy, flow cytometry, or quantification of virus DNA by qPCR. These methods are reliable and sensitive but require long processing times and can be costly. Another method used in the field relies on the identification of enlarged cells in the culture; this method requires little sample processing and is relatively fast. However, visual inspection of cell cultures can be subjective and it can be difficult to establish clear criteria to decide if a cell is enlarged. To overcome these issues, we explored a method to monitor HHV-6B infections based on the systematic and objective measurement of the size of cells using an imaging-based automated cell counter. RESULTS: The size of cells in non-infected and HHV-6B-infected cultures was measured at different times post-infection. The relatively narrow size distribution observed for non-infected cultures contrasted with the broader distributions observed in infected cultures. The average size of cultures shifted towards higher values after infection, and the differences were significant for cultures infected with relatively high doses of virus and/or screened at longer times post-infection. Correlation analysis showed that the trend observed for average size was similar to the trend observed for two other methods to measure infection: amount of virus DNA in supernatant and the percentage of cells expressing a viral antigen. In order to determine the performance of the size-based method in differentiating non-infected and infected cells, receiver operating characteristic (ROC) curves were used to analyze the data. Analysis using size of individual cells showed a moderate performance in detecting infected cells (area under the curve (AUC) ~ 0.80-0.87), while analysis using the average size of cells showed a very good performance in detecting infected cultures (AUC ~ 0.99). CONCLUSIONS: The size-based method proved to be useful in monitoring HHV-6B infections for cultures where a substantial fraction of cells were infected and when monitored at longer times post-infection, with the advantage of being relatively fast and easy. It is a convenient method for monitoring virus production in-vitro and bulk infection of cells.


Assuntos
Tamanho Celular , Efeito Citopatogênico Viral , Herpesvirus Humano 6/fisiologia , Infecções por Roseolovirus/patologia , Carga Viral/métodos , Antígenos Virais/metabolismo , Linhagem Celular Tumoral , DNA Viral/metabolismo , Humanos , Células Jurkat , Curva ROC , Reprodutibilidade dos Testes , Infecções por Roseolovirus/virologia , Proteínas do Envelope Viral/metabolismo
7.
PLoS One ; 10(11): e0142871, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599878

RESUMO

Most of humanity is chronically infected with human herpesvirus 6 (HHV-6), with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48) and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune response to HHV-6B.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Herpesvirus Humano 6/imunologia , Epitopos Imunodominantes/imunologia , Proteômica/métodos , Algoritmos , Alelos , Sequência de Aminoácidos , Separação Celular , Cromatografia Líquida , Cadeias HLA-DRB1/imunologia , Haplótipos/genética , Humanos , Interferon gama/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Reprodutibilidade dos Testes , Doadores de Tecidos , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...