Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3123, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816248

RESUMO

Immunoglobulin light chain-derived (AL) amyloidosis is a debilitating disease without known cure. Almost nothing is known about the structural factors driving the amyloidogenesis of the light chains. This study aimed to identify the fibrillogenic hotspots of the model protein 6aJL2 and in pursuing this goal, two complementary approaches were applied. One of them was based on several web-based computational tools optimized to predict fibrillogenic/aggregation-prone sequences based on different structural and biophysical properties of the polypeptide chain. Then, the predictions were confirmed with an ad-hoc synthetic peptide library. In the second approach, 6aJL2 protein was proteolyzed with trypsin, and the products incubated in aggregation-promoting conditions. Then, the aggregation-prone fragments were identified by combining standard proteomic methods, and the results validated with a set of synthetic peptides with the sequence of the tryptic fragments. Both strategies coincided to identify a fibrillogenic hotspot located at the CDR1 and ß-strand C of the protein, which was confirmed by scanning proline mutagenesis analysis. However, only the proteolysis-based strategy revealed additional fibrillogenic hotspots in two other regions of the protein. It was shown that a fibrillogenic hotspot associated to the CDR1 is also encoded by several κ and λ germline variable domain gene segments. Some parts of this study have been included in the chapter "The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation", published in Physical Biology of Proteins and Peptides, Springer 2015 (ISBN 978-3-319-21687-4).


Assuntos
Amiloide/metabolismo , Regiões Determinantes de Complementaridade , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Agregação Patológica de Proteínas/metabolismo , Sequência de Aminoácidos , Amiloide/química , Humanos , Cadeias Leves de Imunoglobulina/química , Modelos Moleculares , Conformação Proteica em Folha beta , Multimerização Proteica
2.
FEBS J ; 280(23): 6173-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24107228

RESUMO

Approximately 25% of the λ6 light chains have glycine rather than arginine at position 25, which is an allelic variant of the IGLV6-57 (6a) locus. The Gly25 variant has been shown to decrease the folding stability of the germline λ6 V(L) protein 6aJL2 by 1.7 kcal·mol(-1). In this work, we compared the thermodynamic and fibrillogenic properties of the amyloidosis (AL) derived recombinant (r) V(L) protein AR, which contains the allelic variant Gly25, with those of germline rV(L) 6aJL2-R25G and the λ6 disease-associated V(L) proteins Wil (AL) and Jto (myeloma). Our experiments show that of the four proteins AR is the least stable; forms amyloid fibrils at physiological temperature, pH and ionic strength; has the shortest lag time; and elongates homologous seeds most efficiently. We conclude that the Gly25 allelic variant, together with the somatic mutations, contributes importantly to the extremely low stability and high amyloidogenicity of the AL-derived protein AR.


Assuntos
Amiloide/metabolismo , Amiloidose/patologia , Variação Genética/genética , Cadeias lambda de Imunoglobulina/genética , Mutação/genética , Proteínas Recombinantes/genética , Amiloide/química , Amiloide/genética , Amiloidose/genética , Amiloidose/metabolismo , Dicroísmo Circular , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica
3.
Mol Immunol ; 46(4): 668-76, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18930549

RESUMO

Hev b 6.02 (hevein), identified as a major allergen from natural rubber latex (NRL), is involved in the latex-fruit syndrome and also acts as a pathogenesis defense-related protein. Its 3D structure has been solved at high resolution, and its linear epitopes have already been reported. However, information about conformational epitopes is still controversial, even though it is relevant for an accurate diagnosis and treatment, as well as for the study of allergen-antibody molecular interactions. We sought to analyze the B-cell epitopes of Hev b 6.02 at a molecular and structural level, using specific recombinant antibodies. We obtained a murine monoclonal antibody (mAb 6E7) and three human single chain fragments (scFvs A6, H8, and G7) anti-Hev b 6.02 that were able to compete for hevein binding with serum IgEs from latex allergic patients. In vitro assays showed that the mAb 6E7 and scFv H8 recognized the area of Hev b 6.02 where the aromatic residues are exposed; while the scFv G7 defined the amino and carboxy-terminal regions that lie close to each other, as a different epitope. The structural modeling of the Hev b 6.02-scFv H8 and Hev b 6.02-scFv G7 complexes revealed the putative regions of two conformational epitopes. In one of these, the aromatic residues, as well as polar side chains are important for the interaction, suggesting that they are part of a dominant conformational epitope also presented on the Hev b 6.02-IgE interactions. Antibodies recognizing this important allergen have potential to be used to diagnose and ultimately treat latex allergy.


Assuntos
Alérgenos/química , Peptídeos Catiônicos Antimicrobianos/química , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Hipersensibilidade ao Látex/imunologia , Lectinas de Plantas/química , Alérgenos/imunologia , Sequência de Aminoácidos , Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Epitopos de Linfócito B/imunologia , Humanos , Imunoglobulina E/sangue , Dados de Sequência Molecular , Lectinas de Plantas/imunologia , Conformação Proteica , Alinhamento de Sequência
4.
FEMS Immunol Med Microbiol ; 50(1): 77-85, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17456181

RESUMO

A nonimmune library, containing single chain variable fragments (scFv) of immunoglobulin human genes displayed on the surface of M13 filamentous phages, was used to recognize molecules exposed on Histoplasma capsulatum yeasts' surface, during their growth in synthetic medium. The scFv clones were checked in their consistency by Dot-ELISA using HRP/anti-M13 conjugate, and they were tested to recognize molecules on H. Capsulatum yeasts' surface by ELISA in plates. Three out of 80 scFv cones (C2, C6, and C52) reacted consistently with H. capsulatum molecules, and they recognized molecules from both H. capsulatum morphologic phases. However, C6 and C52 clones reacted better with molecules on the surface of whole yeasts, with molecules from the yeasts' cell-wall extract, and with molecules released to the supernatant of the yeast culture. Mycelial supernatants from other fungi, as well as from a Mycobacterium filtrate, were not recognized by scFv phage monoclones. Monoclones C2, C6, and C52 recognized yeast molecules irrespective of the H. capsulatum strains used; the C6 clone revealed a specific immunohistochemistry reaction when tested against homologous and heterologous fungal infected tissues. The scFv clones isolated will be a useful toll to define the role of their target molecules in the host-parasite relationship of histoplasmosis.


Assuntos
Bacteriófago M13/genética , Histoplasma/genética , Histoplasma/imunologia , Fragmentos de Imunoglobulinas/imunologia , Bacteriófago M13/imunologia , Humanos , Fragmentos de Imunoglobulinas/genética , Biblioteca de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...