Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 108: 134-141, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285167

RESUMO

Organophosphate pesticides as diazinon disrupt the neuroimmune communication, affecting the innate and adaptive immune response of the exposed organisms. Since the target molecule of diazinon is typically the acetylcholinesterase enzyme (AChE), the existence of a non-neuronal cholinergic system in leukocytes makes them susceptible to alterations by diazinon. Therefore, the aim of this work was to evaluate the activity of AChE, acetylcholine (ACh) concentration, and the expression of nicotinic ACh receptors (nAChR) and muscarinic ACh receptors (mAChR) in spleen mononuclear cells (SMNC) of Nile tilapia (O. niloticus) exposed in vitro to diazoxon, a diazinon metabolite. SMNC were exposed in-vitro to 1 nM, 1 µM, and 10 µM diazoxon for 24 h. The enzyme activity of AChE was then evaluated by spectrophotometry, followed by ACh quantification by ultra-performance liquid chromatography. Finally, mAChR and nAChR expression was evaluated by RT-qPCR. The results indicate that AChE levels are significantly inhibited at 1 and 10 µM diazoxon, while the relative expression of (M3, M4, and M5) mAChR and (ß2) nAChR is reduced significantly as compared against SMNC not exposed to diazoxon. However, ACh levels show no significant difference with respect to the control group. The data indicate that diazoxon directly alters elements in the cholinergic system of SMNC by AChE inhibition or indirectly through the interaction with AChR, which is likely related to the immunotoxic properties of diazinon and its metabolites.


Assuntos
Ciclídeos/fisiologia , Inseticidas/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Sistema Colinérgico não Neuronal/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Masculino , Baço/efeitos dos fármacos , Baço/fisiopatologia
2.
Brain Behav Immun ; 69: 154-166, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29154957

RESUMO

Sleep loss induces a low-grade inflammatory status characterized by a subtle but sustained increase of pro-inflammatory mediators, which are key regulators of blood-brain barrier function. To investigate the influence of inflammatory status on blood-brain barrier dysfunction induced by sleep restriction we performed an experiment using two strains of mice with different immunological backgrounds, C57BL/6 mice that have a predominant pro-inflammatory response and BALB/c mice that have a predominant anti-inflammatory response. Mice were sleep-restricted during 10 days using the flowerpot technique during 20 h per day with 4 h of daily sleep opportunity. The systemic inflammatory status, blood-brain barrier permeability, and the hippocampal expression of neuroinflammatory markers were characterized at the 10th day. Serum levels of TNF and IFN-γ increased in sleep-restricted C57BL/6 but not in BALB/c mice; no changes in other cytokines were found. Sleep restriction increased blood-brain barrier permeability in C57BL/6 strain but not in BALB/c. The hippocampus of sleep-restricted C57BL/6 mice exhibited an increase in the expression of the neuroinflammatory markers Iba-1, A2A adenosine receptor, and MMP-9; meanwhile in sleep-restricted BALB/c mice the expression of this markers was lesser than the control group. These data suggest that cytokines may be playing a key role in modulating blood-brain barrier function during sleep restriction, and probably the effects are related to Iba-1, MMP-9 and A2A adenosine receptor overexpression.


Assuntos
Barreira Hematoencefálica/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Permeabilidade , Receptor A2A de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/sangue
3.
Artigo em Inglês | MEDLINE | ID: mdl-27174646

RESUMO

Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development.


Assuntos
Ciclídeos/metabolismo , Diazinon/toxicidade , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Peróxidos Lipídicos/metabolismo , Fígado/metabolismo , Oxirredução/efeitos dos fármacos , Praguicidas/toxicidade , Carbonilação Proteica/efeitos dos fármacos , Fatores de Tempo , Poluentes Químicos da Água/toxicidade
4.
Clin Exp Immunol ; 140(3): 436-42, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15932504

RESUMO

A small but relatively constant proportion (3-5%) of mice chronically infected with Mycobacterium lepraemurium (MLM) develops bilateral paralysis of the rear limbs. The aim of the study was to investigate whether or not the bilateral leg palsy results from nerve involvement. Direct bacterial nerve infection or acute/delayed inflammation might possibly affect the nerves. Therefore, palsied animals were investigated for the presence of: (a) histopathological changes in the leg tissues including nerves, bones and annexes, and (b) serum antibodies to M. lepraemurium and M. leprae lipids, including phenolic glycolipid I from M. leprae. Histopathological study of the palsied legs revealed that the paralysis was not the result of direct involvement of the limb nerves, as neither bacilli nor inflammatory cells were observed in the nerve branches studied. Antibodies to brain lipids and cardiolipin were not detected in the serum of the palsied animals, thus ruling out an immune response to self-lipids as the basis for the paralysis. Although high levels of antibodies to MLM lipids were detected in the serum of palsied animals they were not related to limb paralysis, as the nerves of the palsied legs showed no evidence of inflammatory damage. In fact, nerves showed no evidence of damage. Paralysis resulted from severe damage of the leg bones. Within the bones the bone marrow became replaced by extended bacilli-laden granulomas that frequently eroded the bone wall, altering the normal architecture of the bone and its annexes, namely muscle, tendons and connective tissue. Although this study rules out definitively the infectious or inflammatory damage of nerves in murine leprosy, it opens a new avenue of research into the factors that participate in the involvement or the sparing of nerves in human and murine leprosy, respectively.


Assuntos
Ossos da Perna/patologia , Infecções por Mycobacterium/complicações , Mycobacterium lepraemurium/imunologia , Paralisia/etiologia , Animais , Anticorpos Antibacterianos/imunologia , Cardiolipinas/imunologia , Infecções do Sistema Nervoso Central/imunologia , Infecções do Sistema Nervoso Central/patologia , Derme/inervação , Fêmur/patologia , Membro Posterior , Lipídeos/imunologia , Camundongos , Músculo Esquelético/patologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/patologia , Paralisia/imunologia , Paralisia/patologia , Dermatopatias Infecciosas/imunologia , Dermatopatias Infecciosas/patologia , Medula Espinal/patologia , Doenças da Medula Espinal/imunologia , Doenças da Medula Espinal/patologia , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...