Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 10(8): 661-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26030653

RESUMO

Local perturbations in complex oxides, such as domain walls, strain and defects, are of interest because they can modify the conduction or the dielectric and magnetic response, and can even promote phase transitions. Here, we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and apply density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls, where they establish an electrostatic barrier to electron migration. The result is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our 'nanocapacitor' domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology.

2.
Nat Commun ; 6: 6724, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832200

RESUMO

Interest in manipulating the magnetic order by ultrashort laser pulses has thrived since it was observed that such pulses can be used to alter the magnetization on a sub-picosecond timescale. Usually this involves demagnetization by laser heating or, in rare cases, a transient increase of magnetization. Here we demonstrate a mechanism that allows the magnetic order of a material to be enhanced or attenuated at will. This is possible in systems simultaneously possessing a low, tunable density of conduction band carriers and a high density of magnetic moments. In such systems, the thermalization time can be set such that adiabatic processes dominate the photoinduced change of the magnetic order--the three-temperature model for interacting thermalized electron, spin and lattice reservoirs is bypassed. In ferromagnetic Eu(1-x)Gd(x)O, we thereby demonstrate the strengthening as well as the weakening of the magnetic order by ~10% and within ≤3 ps by optically controlling the magnetic exchange interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...