Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 2105, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765812

RESUMO

A tragic drowning event occurred along southeastern beaches of Lake Michigan on a sunny and calm July 4, 2003, hours after a fast-moving convective storm had crossed the lake. Data forensics indicates that a moderate-height (~0.3 m) meteotsunami was generated by the fast-moving storm impacting the eastern coast of the lake. Detailed Nearshore Area (DNA) modeling forensics on a high-resolution spatial O(1 m) grid reveals that the meteotsunami wave generated unexpected rip currents, changing the nearshore condition from calm to hazardous in just a few minutes and lasting for several hours after the storm. Cross-comparison of rip current incidents and meteotsunami occurrence databases suggests that meteotsunamis present severe water safety hazards and high risks, more frequently than previously recognized. Overall, meteorological tsunamis are revealed as a new generation mechanism of rip currents, thus posing an unexpected beach hazard that, to date, has been ignored.

2.
Sci Rep ; 6: 37832, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883066

RESUMO

The generation mechanism of meteotsunamis, which are meteorologically induced water waves with spatial/temporal characteristics and behavior similar to seismic tsunamis, is poorly understood. We quantify meteotsunamis in terms of seasonality, causes, and occurrence frequency through the analysis of long-term water level records in the Laurentian Great Lakes. The majority of the observed meteotsunamis happen from late-spring to mid-summer and are associated primarily with convective storms. Meteotsunami events of potentially dangerous magnitude (height > 0.3 m) occur an average of 106 times per year throughout the region. These results reveal that meteotsunamis are much more frequent than follow from historic anecdotal reports. Future climate scenarios over the United States show a likely increase in the number of days favorable to severe convective storm formation over the Great Lakes, particularly in the spring season. This would suggest that the convectively associated meteotsunamis in these regions may experience an increase in occurrence frequency or a temporal shift in occurrence to earlier in the warm season. To date, meteotsunamis in the area of the Great Lakes have been an overlooked hazard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...