Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 9(6): 1030-1041, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38623705

RESUMO

Photoreduction of carbon dioxide (CO2) on plasmonic structures is of great interest in photocatalysis to aid selectivity. While species commonly found in reaction environments and associated intermediates can steer the reaction down different pathways by altering the potential energy landscape of the system, they are often not addressed when designing efficient plasmonic catalysts. Here, we perform an atomistic study of the effect of the hydroxyl group (OH) on CO2 activation and hot electron generation and transfer using first-principles calculations. We show that the presence of OH is essential in breaking the linear symmetry of CO2, which leads to a charge redistribution and a decrease in the OCO angle to 134°, thereby activating CO2. Analysis of the partial density of states (pDOS) demonstrates that the OH group mediates the orbital hybridization between Au and CO2 resulting in more accessible states, thus facilitating charge transfer. By employing time-dependent density functional theory (TDDFT), we quantify the fraction of hot electrons directly generated into hybridized molecular states at resonance, demonstrating a broader energy distribution and an 11% increase in charge-transfer in the presence of OH groups. We further show that the spectral overlap between excitation energy and plasmon resonance plays a critical role in efficiently modulating electron transfer processes. These findings contribute to the mechanistic understanding of plasmon-mediated reactions and demonstrate the importance of co-adsorbed species in tailoring the electron transfer processes, opening new avenues for enhancing selectivity.

2.
Phys Chem Chem Phys ; 19(4): 3094-3103, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28079207

RESUMO

The issue of hysteresis in perovskite solar cells has now been convincingly linked to the presence of mobile ions within the perovskite layer. Here we test the limits of the ionic theory by attempting to account for a number of exotic characterization results using a detailed numerical device model that incorporates ionic charge accumulation at the perovskite interfaces. Our experimental observations include a temporary enhancement in open-circuit voltage following prolonged periods of negative bias, dramatically S-shaped current-voltage sweeps, decreased current extraction following positive biasing or "inverted hysteresis", and non-monotonic transient behaviours in the dark and the light. Each one of these phenomena can be reproduced and ultimately explained by our models, providing further evidence for the ionic theory of hysteresis as well as valuable physical insight into the factors that coincide to bring these phenomena about. In particular we find that both interfacial recombination and carrier injection from the selective contacts are heavily affected by ionic accumulation, and are essential to explaining the non-monotonic voltage transients and S-shaped J-V curves. Inverted hysteresis is attributed to the occurrence of "positive" ionic accumulation, which may also be responsible for enhancing the stabilized open-circuit voltage in some perovskite cells.

3.
Phys Chem Chem Phys ; 18(32): 22557-64, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27472263

RESUMO

Organometal halide perovskite-based solar cells have rapidly achieved high efficiency in recent years. However, many fundamental recombination mechanisms underlying the excellent performance are still not well understood. Here we apply confocal photoluminescence microscopy to investigate the time and spatial characteristics of light-induced trap de-activation in CH3NH3PbI3 perovskite films. Trap de-activation is characterized by a dramatic increase in PL emission during continuous laser illumination accompanied by a lateral expansion of the PL enhancement far beyond the laser spot. These observations are attributed to an oxygen-assisted trap de-activation process associated with carrier diffusion. To model this effect, we add a trap de-activation term to the standard semiconductor carrier recombination and diffusion models. With this approach we are able to reproduce the observed temporal and spatial dependence of laser induced PL enhancement using realistic physical parameters. Furthermore, we experimentally investigate the role of trap diffusion in this process, and demonstrate that the trap de-activation is not permanent, with the traps appearing again once the illumination is turned off. This study provides new insights into recombination and trap dynamics in perovskite films that could offer a better understanding of perovskite solar cell performance.

4.
Opt Express ; 24(2): 759-72, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832461

RESUMO

We present a simple conceptual model describing the absorption enhancement provided by diffraction gratings due to resonant coupling to guided modes in a multi-layered structure. In doing so, we provide insight into why certain guided modes are more strongly excited than others and demonstrate that the spatial overlap of the mode profile with the grating is important. The model is verified by comparison to optical simulations and experimental measurements. We fabricate metal nanoparticle gratings integrated as back contacts in solution-processed PbS colloidal quantum dot photodiodes. The measured photocurrent at the target wavelength is enhanced by 250%, with reference to planar devices, due to resonant coupling to guided modes with strong spatial overlap with the gratings. In comparison, resonant coupling to weakly overlapping modes results in a 25% increase at the same wavelength.

5.
Adv Mater ; 26(3): 443-8, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24173655

RESUMO

A simple approach is demonstrated to combine a light trapping scheme and a conductive substrate for solution processed solar cells. By means of soft lithography, a new light-trapping architecture can be integrated as the bottom electrode for emerging thin-film solar-cell technologies without added costs, fully compatible with low-temperature processes, and yielding an enhancement in the photocurrent without altering the rest of the electrical performance of the device.

6.
Prog Photovolt ; 20(7): 837-842, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26300618

RESUMO

A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin-film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells.

7.
Opt Express ; 19(21): 21038-49, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21997112

RESUMO

We present a full wave 3D simulation study of optical absorption enhancement in solution processed metal-semiconductor nanocomposite ultrathin films, which consist of colloidal metallic nanoparticles (MNPs) and semiconductor matrices of polymer and colloidal quantum dots (CQD). We present an approach for modeling the optical properties of a CQD film, and study the effect of the optical properties of the semiconductor in the near field enhancement showing that CQD is a very promising platform to exploit the benefits of the near-field effects. We show that over a 100% enhancement can be achieved in the visible-near infrared region of the spectrum for CQD PbS films, with a maximum gain factor of 4 when MNPs are on resonance. We study in detail the effect of MNP capping for different ligand lengths and materials and propose solutions to optimize absorption enhancement.


Assuntos
Nanopartículas Metálicas/química , Nanocompostos/química , Nanotecnologia/métodos , Coloides/química , Desenho de Equipamento , Teste de Materiais , Óptica e Fotônica , Pontos Quânticos , Reprodutibilidade dos Testes , Semicondutores , Energia Solar , Espectrofotometria Infravermelho
8.
Opt Express ; 19(25): 25230-41, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273914

RESUMO

Disk-shaped metal nanoparticles on high-index substrates can support resonant surface plasmon polariton (SPP) modes at the interface between the particle and the substrate. We demonstrate that this new conceptual model of nanoparticle scattering allows clear predictive abilities, beyond the dipole model. As would be expected from the nature of the mode, the SPP resonance is very sensitive to the area in contact with the substrate, and insensitive to particle height. We can employ this new understanding to minimise mode out-coupling and Ohmic losses in the particles. Taking into account optical losses due to parasitic absorption and outcoupling of scattered light, we estimate that an optimal array of nanoparticles on a 2 µm Si substrate can provide up to 71% of the enhancement in absorption achievable with an ideal Lambertian rear-reflector. This result compares to an estimate of 67% for conventional pyramid-type light trapping schemes.


Assuntos
Modelos Químicos , Nanopartículas/química , Pinças Ópticas , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...