Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 26(7): 749-756, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38506771

RESUMO

BACKGROUND & AIMS: Cell therapies based on mesenchymal stromal cells (MSCs) have gained an increasing therapeutic interest in the context of multiple disorders. Nonetheless, this field still faces important challenges, particularly concerning suitable manufacturing platforms. Here, we aimed at establishing a scalable culture system to expand umbilical cord-derived Wharton's jelly MSC (MSC(WJ)) and their derived extracellular vesicles (EVs) by using dissolvable microcarriers combined with xeno(geneic)-free culture medium. METHODS: MSC(WJ) isolated from three donors were cultured at a starting density of 1 × 106 cells per spinner flask, i.e., 2.8 × 103 cells per cm2 of dissolvable microcarrier surface area. After a 6-day expansion period of MSC(WJ), extracellular vesicles (EVs) were produced for 24 h. RESULTS: Taking advantage of an intermittent agitation regimen, we observed high adhesion rates to the microcarriers (over 90% at 24 h) and achieved 15.8 ± 0.7-fold expansion after 6 days of culture. Notably, dissolution of the microcarriers was achieved through a pectinase-based solution to recover the cell product, reducing the hurdles of downstream processing. MSC identity was validated by detecting the characteristic MSC immunophenotype and by multilineage differentiation assays. Considering the growing interest in MSC-derived EVs, which are known to be mediators of the therapeutic features of MSC, this platform also was evaluated for EV production. Upon a 24-h period of conditioning, secreted EVs were isolated by ultrafiltration followed by anion-exchange chromatography and exhibited the typical cup-shaped morphology, small size distribution (162.6 ± 30.2 nm) and expressed EV markers (CD63, CD9 and syntenin-1). CONCLUSIONS: Taken together, we established a time-effective and robust scalable platform that complies with clinical-grade standards for the dual production of MSC(WJ) and their derived EV.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Proliferação de Células , Cordão Umbilical/citologia , Geleia de Wharton/citologia
2.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010295

RESUMO

Human mesenchymal stem cells (hMSCs) are currently being explored as a promising cell-based therapeutic modality for various diseases, with more market approvals for clinical use expected over the next few years. To facilitate this transition, addressing the bottlenecks of scale, lot-to-lot reproducibility, cost, regulatory compliance, and quality control is critical. These challenges can be addressed by closing the process and adopting automated manufacturing platforms. In this study, we developed a closed and semi-automated process for passaging and harvesting Wharton's jelly (WJ)-derived hMSCs (WJ-hMSCs) from multi-layered flasks using counterflow centrifugation. The WJ-hMSCs were expanded using regulatory compliant serum-free xeno-free (SFM XF) medium, and they showed comparable cell proliferation (population doubling) and morphology to WJ-hMSCs expanded in classic serum-containing media. Our closed semi-automated harvesting protocol demonstrated high cell recovery (~98%) and viability (~99%). The cells washed and concentrated using counterflow centrifugation maintained WJ-hMSC surface marker expression, colony-forming units (CFU-F), trilineage differentiation potential, and cytokine secretion profiles. The semi-automated cell harvesting protocol developed in the study can be easily applied for the small- to medium-scale processing of various adherent and suspension cells by directly connecting to different cell expansion platforms to perform volume reduction, washing, and harvesting with a low output volume.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho , Diferenciação Celular , Proliferação de Células , Células Cultivadas
3.
PLoS One ; 12(3): e0173723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301528

RESUMO

A facultative heterochromatin mark, histone H3 lysine 9 dimethylation (H3K9me2), which is mediated by histone methyltransferases G9a/GLP (EHMT2/1), undergoes dramatic rearrangements during myeloid cell differentiation as observed by chromatin imaging. To determine whether these structural transitions also involve genomic repositioning of H3K9me2, we used ChIP-sequencing to map genome-wide topography of H3K9me2 in normal human granulocytes, normal CD34+ hematopoietic progenitors, primary myeloblasts from acute myeloid leukemia (AML) patients, and a model leukemia cell line K562. We observe that H3K9me2 naturally repositions from the previously designated "repressed" chromatin state in hematopoietic progenitors to predominant association with heterochromatin regions in granulocytes. In contrast, AML cells accumulate H3K9me2 on previously undefined large (> 100 Kb) genomic blocks that are enriched with AML-specific single nucleotide variants, sites of chromosomal translocations, and genes downregulated in AML. Specifically, the AML-specific H3K9me2 blocks are enriched with genes regulated by the proto-oncogene ERG that promotes stem cell characteristics. The AML-enriched H3K9me2 blocks (in contrast to the heterochromatin-associated H3K9me2 blocks enriched in granulocytes) are reduced by pharmacological inhibition of the histone methyltransferase G9a/GLP in K562 cells concomitantly with transcriptional activation of ERG and ETS1 oncogenes. Our data suggest that G9a/GLP mediate formation of transient H3K9me2 blocks that are preserved in AML myeloblasts and may lead to an increased rate of AML-specific mutagenesis and chromosomal translocations.


Assuntos
Mapeamento Cromossômico , Inativação Gênica , Instabilidade Genômica , Histonas/genética , Leucemia Mieloide Aguda/genética , Diferenciação Celular , Humanos , Células K562 , Leucemia Mieloide Aguda/patologia , Polimorfismo de Nucleotídeo Único , Proto-Oncogene Mas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...