Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Surg Res ; 300: 150-156, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38815513

RESUMO

INTRODUCTION: Blunt cardiac injury (BCI) can be challenging diagnostically, and if misdiagnosed, can lead to life-threatening complications. Our institution previously evaluated BCI screening with troponin and electrocardiogram (EKG) during a transition from troponin I to high sensitivity troponin (hsTnI), a more sensitive troponin I assay. The previous study found an hsTnI of 76 ng/L had the highest capability of accurately diagnosing a clinically significant BCI. The aim of this study was to determine the efficacy of the newly implemented protocol. METHODS: Patients diagnosed with a sternal fracture from March 2022 to April 2023 at our urban level-1 trauma center were retrospectively reviewed for EKG findings, hsTnI trend, echocardiogram changes, and clinical outcomes. The BCI cohort and non-BCI cohort ordinal measures were compared using Wilcoxon's two-tailed rank sum test and categorical measures were compared with Fisher's exact test. Youden indices were used to evaluate hsTnI sensitivity and specificity. RESULTS: Sternal fractures were identified in 206 patients, of which 183 underwent BCI screening. Of those screened, 103 underwent echocardiogram, 28 were diagnosed with clinically significant BCIs, and 15 received intervention. The peak hsTnI threshold of 76 ng/L was found to have a Youden index of 0.31. Rather, the Youden index was highest at 0.50 at 40 ng/L (sensitivity 0.79 and specificity 0.71) for clinically significant BCI. CONCLUSIONS: Screening patients with sternal fractures for BCI using hsTnI and EKG remains effective. To optimize the hsTnI threshold, this study determined the hsTnI threshold should be lowered to 40 ng/L. Further improvements to the institutional protocol may be derived from multicenter analysis.

2.
J Am Coll Surg ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770953

RESUMO

BACKGROUND: Traumatic brain injury (TBI)-related morbidity is caused largely by secondary injury resulting from hypoxia, excessive sympathetic drive, and uncontrolled inflammation. Aeromedical evacuation (AE) is utilized by the military for transport of wounded soldiers to higher levels of care. We hypothesized that the hypobaric, hypoxic conditions of AE may exacerbate uncontrolled inflammation following TBI that could contribute to more severe TBI-related secondary injury. STUDY DESIGN: Thirty-six female pigs were used to test TBI vs. TBI sham, hypoxia vs. normoxia, and hypobaria vs. ground conditions. TBI was induced by controlled cortical injury, hypobaric conditions of 12,000 feet were established in an altitude chamber, and hypoxic exposure was titrated to 85% SpO2 while at altitude. Serum cytokines, UCH-L1 and TBI biomarkers were analyzed via ELISA. Gross analysis and staining of cortex and hippocampus tissue was completed for glial fibrillary acidic protein (GFAP) and phosphorylated tau (p-tau). RESULTS: Serum IL-1b, IL-6, and TNFα were significantly elevated following TBI in pigs exposed to altitude-induced hypobaria/hypoxia, as well as hypobaria alone, compared to ground level/normoxia. No difference in TBI biomarkers following TBI or hypobaric, hypoxic exposure was noted. No difference in brain tissue GFAP or p-tau when comparing the most different conditions of sham TBI+ground/normoxia to the TBI+hypobaria/hypoxia group was noted. CONCLUSION: The hypobaric environment of AE induces systemic inflammation following TBI. Severe inflammation may play a role in exacerbating secondary injury associated with TBI and contribute to worse neurocognitive outcomes. Measures should be taken to minimize barometric and oxygenation changes during AE following TBI.

3.
J Trauma Acute Care Surg ; 97(1): 57-64, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38605437

RESUMO

BACKGROUND: Prior literature has implicated red blood cells (RBCs) in the initiation of thrombosis and suggests that posttransfusion hypercoagulability may occur secondary to the effects of RBCs. Elevated serum tissue factor is a known sequelae of acute trauma. Phosphatidylserine (PS) is a prothrombotic phospholipid present within the RBC cell membrane. We hypothesized that RBC aggregation is dependent on the interaction between RBC membrane bound (exposed) PS, extracellular calcium, and tissue factor. METHODS: Human whole blood (WB) was separated into components, including RBCs and platelet-rich plasma (PRP). Whole blood, PRP, and RBCs underwent impedance aggregometry utilizing arachidonic acid (AA), ADP, collagen, calcium, and tissue factor (TF)-based agonists. Red blood cells then underwent impedance aggregometry utilizing combined calcium and TF agonists. Red blood cells were pretreated with Annexin V, a known PS blocking agent, and underwent impedance aggregometry with combined calcium and TF agonists to determine if the mechanism of calcium/TF-induced RBC aggregability is dependent on PS. Red blood cells treated with calcium, TF, calcium+TF, and pre-treated with Annexin V followed by calcium+TF were perfused through an in vitro model of pulmonary microcirculatory flow. RESULTS: Red blood cell aggregation was significantly higher than that of WB and PRP when utilizing a TF agonist, an effect unique to TF. The combination of calcium and TF demonstrated significantly higher RBC aggregation than either agonist alone. Pretreatment with Annexin V resulted in a significantly reduced aggregability of RBC following treatment with TF + calcium. Red blood cells aged to 42 days did not exhibit significant change in aggregation. Exposure to calcium and TF significantly reduced time to thrombosis of RBCs perfused through a pulmonary microcirculatory model. CONCLUSION: Treatment with both TF and calcium synergistically induces RBC aggregation. Phosphatidylserine appears to play an integral role in the TF/calcium-based, age-independent RBC aggregation response. Red blood cells treated with TF + calcium exhibit more rapid thrombus formation in an in vitro model of pulmonary microcirculatory perfusion.


Assuntos
Cálcio , Eritrócitos , Fosfatidilserinas , Tromboplastina , Trombose , Humanos , Fosfatidilserinas/metabolismo , Tromboplastina/metabolismo , Cálcio/metabolismo , Trombose/metabolismo , Trombose/etiologia , Eritrócitos/metabolismo , Agregação Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Plasma Rico em Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...