Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Pflugers Arch ; 476(4): 593-610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374228

RESUMO

The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.


Assuntos
Bicarbonatos , Enterócitos , Animais , Camundongos , Humanos , Bicarbonatos/metabolismo , Transporte de Íons , Enterócitos/metabolismo , Membrana Celular/metabolismo , Secreções Corporais/metabolismo , Concentração de Íons de Hidrogênio , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo
2.
Sci Rep ; 12(1): 17644, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271018

RESUMO

Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Corantes Fluorescentes , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Fluoresceínas
3.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295451

RESUMO

The present study is dedicated to the evaluation of the mechanical properties of an additively manufactured (AM) aluminum alloy and their dependence on temperature and build orientation. Tensile test samples were produced from a standard AlSi10Mg alloy by means of the Laser Powder Bed Fusion (LPBF) or Laser Beam Melting (LBM) process at polar angles of 0°, 45° and 90°. Prior to testing, samples were stress-relieved on the build platform for 2 h at 350 °C. Tensile tests were performed at four temperature levels (room temperature (RT), 125, 250 and 450 °C). Results are compared to previously published data on AM materials with and without comparable heat treatment. To foster a deeper understanding of the obtained results, fracture surfaces were analyzed, and metallographic sections were prepared for microstructural evaluation and for additional hardness measurements. The study confirms the expected significant reduction of strength at elevated temperatures and specifically above 250 °C: Ultimate tensile strength (UTS) was found to be 280.2 MPa at RT, 162.8 MPa at 250 °C and 34.4 MPa at 450 °C for a polar angle of 0°. In parallel, elongation at failure increased from 6.4% via 15.6% to 26.5%. The influence of building orientation is clearly dominated by the temperature effect, with UTS values at RT for polar angles of 0° (vertical), 45° and 90° (horizontal) reaching 280.2, 272.0 and 265.9 MPa, respectively, which corresponds to a 5.1% deviation. The comparatively low room temperature strength of roughly 280 MPa is associated with stress relieving and agrees well with data from the literature. However, the complete breakdown of the cellular microstructure reported in other studies for treatments at similar or slightly lower temperatures is not fully confirmed by the metallographic investigations. The data provide a basis for the prediction of AM component response under the thermal and mechanical loads associated with high-pressure die casting (HPDC) and thus facilitate optimizing HPDC-based compound casting processes involving AM inserts.

4.
Anal Bioanal Chem ; 414(10): 3243-3255, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34936009

RESUMO

The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.


Assuntos
Imunossupressores , Dispositivos Ópticos , Humanos , Imunoensaio , Microfluídica , Silício
5.
Biosensors (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562904

RESUMO

Endothelial and epithelial cellular barriers play a vital role in the selective transport of solutes and other molecules. The properties and function of these barriers are often affected in case of inflammation and disease. Modelling cellular barriers in vitro can greatly facilitate studies of inflammation, disease mechanisms and progression, and in addition, can be exploited for drug screening and discovery. Here, we report on a parallelizable microfluidic platform in a multiwell plate format with ten independent cell culture chambers to support the modelling of cellular barriers co-cultured with 3D tumor spheroids. The microfluidic platform was fabricated by microinjection molding. Electrodes integrated into the chip in combination with a FT-impedance measurement system enabled transepithelial/transendothelial electrical resistance (TEER) measurements to rapidly assess real-time barrier tightness. The fluidic layout supports the tubeless and parallelized operation of up to ten distinct cultures under continuous unidirectional flow/perfusion. The capabilities of the system were demonstrated with a co-culture of 3D tumor spheroids and cellular barriers showing the growth and interaction of HT29 spheroids with a cellular barrier of MDCK cells.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Impedância Elétrica , Eletrodos , Células Epiteliais , Humanos , Microfluídica , Neoplasias/diagnóstico
6.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032568

RESUMO

During hunger or malnutrition, animals prioritize alimentation of the brain over other organs to ensure its function and, thus, their survival. This protection, also-called brain sparing, is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood-brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similar to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane; even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-ß signaling. Considering TGF-ß-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB.


Assuntos
Barreira Hematoencefálica , Metabolismo dos Carboidratos , Transdução de Sinais , Inanição , Fator de Crescimento Transformador beta/metabolismo , Animais , Transporte Biológico , Drosophila , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Transcrição Gênica , Trealose/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/metabolismo
7.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804674

RESUMO

Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3--coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined "transport metabolon". While transport metabolons built with HCO3--coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.


Assuntos
Anidrases Carbônicas/metabolismo , Neoplasias/metabolismo , Prótons , Animais , Biomarcadores , Anidrases Carbônicas/genética , Suscetibilidade a Doenças , Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia
8.
Lab Chip ; 21(1): 9-21, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289737

RESUMO

Worldwide, the microfluidics industry has grown steadily over the last 5 years, with the market for microfluidic medical devices experiencing a compound growth rate of 22%. The number of submissions of microfluidic-based devices to regulatory agencies such as the U.S. Food & Drug Administration (FDA) has also steadily increased, creating a strong demand for the development of consistent and accessible tools for evaluating microfluidics-based devices. The microfluidics community has been slow, or even reluctant, to adopt standards and guidelines, which are needed for harmonization and for assisting academia, researchers, designers, and industry across all stages of product development. Appropriate assessments of device performance also remain a bottleneck for microfluidic devices. Standards reside at the core of mature supply chains generating economies of scale and forging a consistent pathway to match stakeholder expectations, thus creating a foundation for successful commercialization. This article provides a unique perspective on the need for the development of standards specific to the emerging biomedical field of microfluidics. Our aim is to facilitate innovation by encouraging the microfluidics community to work together to help bridge knowledge gaps and improve efficiency in getting high-quality microfluidic medical devices to market faster. We start by acknowledging the progress that has been made in various areas over the past decade. We then describe the existing gaps in the standardization of flow control, interconnections, component integration, manufacturing, assembly, packaging, reliability, performance of microfluidic elements and safety testing of microfluidic devices throughout the entire product life cycle.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Padrões de Referência , Reprodutibilidade dos Testes
9.
Curr Med Chem ; 28(17): 3361-3384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33138744

RESUMO

BACKGROUND: Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE: The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS: Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS: Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.


Assuntos
Anidrases Carbônicas , Neoplasias , Antígenos de Neoplasias , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
10.
ACS Nano ; 14(9): 10784-10795, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32844655

RESUMO

The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field.


Assuntos
Técnicas Analíticas Microfluídicas , Hidrodinâmica , Microfluídica
11.
Lab Chip ; 20(16): 2911-2926, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662810

RESUMO

HepaChip microplate (HepaChip-MP) is a microfluidic platform comprised of 24 independent culture chambers with continuous, unidirectional perfusion. In the HepaChip-MP, an automated dielectrophoresis process selectively assembles viable cells into elongated micro tissues. Freshly isolated primary human hepatocytes (PHH) and primary human liver endothelial cells (HuLEC) were successfully assembled as cocultures aiming to mimic the liver sinusoid. Minimal quantities of primary human cells are required to establish micro tissues in the HepaChip-MP. Metabolic function including induction of CYP enzymes in PHH was successfully measured demonstrating a high degree of metabolic activity of cells in HepaChip-MP cultures and sufficient sensitivity of LC-MS analysis even for the relatively small number of cells per chamber. Further, parallelization realized in HepaChip-MP enabled the acquisition of dose-response toxicity data of diclofenac with a single device. Several unique technical features should enable a widespread application of this in vitro model. We have demonstrated fully automated preparation of cell cultures in HepaChip-MP using a pipetting robot. The tubeless unidirectional perfusion system based on gravity-driven flow can be operated within a standard incubator system. Overall, the system readily integrates in workflows common in cell culture labs. Further research will be directed towards optimization of media composition to further extend culture lifetime and study oxygen gradients and their effect on zonation within the sinusoid-like microorgans. In summary, we have established a novel parallelized and scalable microfluidic in vitro liver model showing hepatocyte function and anticipate future in-depth studies of liver biology and applications in pre-clinical drug development.


Assuntos
Células Endoteliais , Fígado , Técnicas de Cultura de Células , Técnicas de Cocultura , Hepatócitos , Humanos
12.
Cancers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272695

RESUMO

Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.

13.
Front Behav Neurosci ; 14: 612430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551766

RESUMO

Neuronal function is highly energy demanding, requiring efficient transport of nutrients into the central nervous system (CNS). Simultaneously the brain must be protected from the influx of unwanted solutes. Most of the energy is supplied from dietary sugars, delivered from circulation via the blood-brain barrier (BBB). Therefore, selective transporters are required to shuttle metabolites into the nervous system where they can be utilized. The Drosophila BBB is formed by perineural and subperineurial glial cells, which effectively separate the brain from the surrounding hemolymph, maintaining a constant microenvironment. We identified two previously unknown BBB transporters, MFS3 (Major Facilitator Superfamily Transporter 3), located in the perineurial glial cells, and Pippin, found in both the perineurial and subperineurial glial cells. Both transporters facilitate uptake of circulating trehalose and glucose into the BBB-forming glial cells. RNA interference-mediated knockdown of these transporters leads to pupal lethality. However, null mutants reach adulthood, although they do show reduced lifespan and activity. Here, we report that both carbohydrate transport efficiency and resulting lethality found upon loss of MFS3 or Pippin are rescued via compensatory upregulation of Tret1-1, another BBB carbohydrate transporter, in Mfs3 and pippin null mutants, while RNAi-mediated knockdown is not compensated for. This means that the compensatory mechanisms in place upon mRNA degradation following RNA interference can be vastly different from those resulting from a null mutation.

14.
Br J Cancer ; 122(2): 157-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819195

RESUMO

Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Metabolismo Energético/genética , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Concentração de Íons de Hidrogênio , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia
15.
Oncogene ; 39(8): 1710-1723, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31723238

RESUMO

Tumor cells rely on glycolysis to meet their elevated demand for energy. Thereby they produce significant amounts of lactate and protons, which are exported via monocarboxylate transporters (MCTs), supporting the formation of an acidic microenvironment. The present study demonstrates that carbonic anhydrase IX (CAIX), one of the major acid/base regulators in cancer cells, forms a protein complex with MCT1 and MCT4 in tissue samples from human breast cancer patients, but not healthy breast tissue. Formation of this transport metabolon requires binding of CAIX to the Ig1 domain of the MCT1/4 chaperon CD147 and is required for CAIX-mediated facilitation of MCT1/4 activity. Application of an antibody, directed against the CD147-Ig1 domain, displaces CAIX from the transporter and suppresses CAIX-mediated facilitation of proton-coupled lactate transport. In cancer cells, this "metabolon disruption" results in a decrease in lactate transport, reduced glycolysis, and ultimately reduced cell proliferation. Taken together, the study shows that carbonic anhydrases form transport metabolons with acid/base transporters in human tumor tissue and that these interactions can be exploited to interfere with tumor metabolism and proliferation.


Assuntos
Neoplasias da Mama/patologia , Anidrase Carbônica IX/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Simportadores/metabolismo , Basigina/química , Basigina/metabolismo , Humanos , Células MCF-7 , Modelos Moleculares , Domínios Proteicos
16.
Front Neurosci ; 13: 1301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866811

RESUMO

Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a "transport metabolon" with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3 - and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme's catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.

17.
Cell Rep ; 29(1): 135-150.e9, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577944

RESUMO

Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials.


Assuntos
Glicólise/fisiologia , Linfócitos T/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Xenopus laevis
18.
FEBS Open Bio ; 9(7): 1204-1211, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033227

RESUMO

Carbonic anhydrases (CA) catalyze the reversible hydration of CO2 to protons and bicarbonate and thereby play a fundamental role in the epithelial acid/base transport mechanisms serving fluid secretion and absorption for whole-body acid/base regulation. The three carbonic anhydrase-related proteins (CARPs) VIII, X, and XI, however, are catalytically inactive. Previous work has shown that some CA isoforms noncatalytically enhance lactate transport through various monocarboxylate transporters (MCT). Therefore, we examined whether the catalytically inactive CARPs play a role in lactate transport. Here, we report that CARP VIII, X, and XI enhance transport activity of the MCT MCT1 when coexpressed in Xenopus oocytes, as evidenced by the rate of rise in intracellular H+ concentration detected using ion-sensitive microelectrodes. Based on previous studies, we suggest that CARPs may function as a 'proton antenna' for MCT1, to drive proton-coupled lactate transport across the cell membrane.


Assuntos
Anidrases Carbônicas/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animais , Animais Geneticamente Modificados , Bicarbonatos/metabolismo , Transporte Biológico/fisiologia , Transporte Biológico Ativo , Biomarcadores Tumorais/metabolismo , Catálise , Humanos , Concentração de Íons de Hidrogênio , Transportadores de Ácidos Monocarboxílicos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Prótons , Simportadores/fisiologia , Xenopus laevis/metabolismo
19.
J Biol Chem ; 294(2): 593-607, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446621

RESUMO

Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.


Assuntos
Basigina/metabolismo , Anidrase Carbônica IV/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Animais , Basigina/química , Células HEK293 , Humanos , Proteínas de Membrana , Modelos Moleculares , Domínios Proteicos , Ratos , Alinhamento de Sequência , Simportadores/metabolismo , Xenopus
20.
ACS Sens ; 3(10): 2079-2086, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30269480

RESUMO

Tuberculosis (TB) is the leading global cause of death from a single infectious agent. Registered incidence rates are low, especially in low-resource countries with weak health systems, due to the disadvantages of current diagnostic techniques. A major effort is directed to develop a point-of-care (POC) platform to reduce TB deaths with a prompt and reliable low-cost technique. In the frame of the European POCKET Project, a novel POC platform for the direct and noninvasive detection of TB in human urine was developed. The photonic sensor chip is integrated in a disposable cartridge and is based on a highly sensitive Mach-Zehnder Interferometer (MZI) transducer combined with an on-chip spectral filter. The required elements for the readout are integrated in an instrument prototype, which allows real-time monitoring and data processing. In this work, the novel POC platform has been employed for the direct detection of lipoarabinomannan (LAM), a lipopolysaccharide found in the mycobacterium cell wall. After the optimization of several parameters, a limit of detection of 475 pg/mL (27.14 pM) was achieved using a direct immunoassay in undiluted human urine in less than 15 min. A final validation of the technique was performed using 20 clinical samples from TB patients and healthy donors, allowing the detection of TB in people regardless of HIV coinfection. The results show excellent correlation to those obtained with standard techniques. These promising results demonstrate the high sensitivity, specificity and applicability of our novel POC platform, which could be used during routine check-ups in developing countries.


Assuntos
Imunoensaio/métodos , Lipopolissacarídeos/urina , Tuberculose/diagnóstico , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Humanos , Limite de Detecção , Lipopolissacarídeos/imunologia , Mycobacterium tuberculosis/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...