Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 76(5): 466-473, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069719

RESUMO

The oligonucleotide therapeutics field has blossomed in recent years, with thirteen approved drugs today and the promise of accelerated growth in coming years. Much of the progress in this field is due to advances in the medicinal chemistry of oligonucleotides,combined with a judicious choice of molecular targets and disease areas. In this perspective, we describe the growth of this new class of drugs highlighting selected milestones in oligonucleotide medicinal chemistry.

2.
ACS Appl Mater Interfaces ; 13(39): 46488-46498, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34551256

RESUMO

Narrow-band gap (NBG) Sn-Pb perovskites with band gaps of ∼1.2 eV, which correspond to a broad photon absorption range up to ∼1033 nm, are highly promising candidates for bottom solar cells in all-perovskite tandem photovoltaics. To exploit their potential, avoiding optical losses in the top layer stacks of the tandem configuration is essential. This study addresses this challenge in two ways (1) removing the hole-transport layer (HTL) and (2) implementing highly transparent hydrogen-doped indium oxide In2O3:H (IO:H) electrodes instead of the commonly used indium tin oxide (ITO). Removing HTL reduces parasitic absorption loss in shorter wavelengths without compromising the photovoltaic performance. IO:H, with an ultra-low near-infrared optical loss and a high charge carrier mobility, results in a remarkable increase in the photocurrent of the semitransparent top and (HTL-free) NBG bottom perovskite solar cells when substituted for ITO. As a result, an IO:H-based four-terminal all-perovskite tandem solar cell (4T all-PTSCs) with a power conversion efficiency (PCE) as high as 24.8% is demonstrated, outperforming ITO-based 4T all-PTSCs with PCE up to 23.3%.

3.
Nat Commun ; 7: 12681, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27601181

RESUMO

Photoelectrochemical water splitting promises both sustainable energy generation and energy storage in the form of hydrogen. However, the realization of this vision requires laboratory experiments to be engineered into a large-scale technology. Up to now only few concepts for scalable devices have been proposed or realized. Here we introduce and realize a concept which, by design, is scalable to large areas and is compatible with multiple thin-film photovoltaic technologies. The scalability is achieved by continuous repetition of a base unit created by laser processing. The concept allows for independent optimization of photovoltaic and electrochemical part. We demonstrate a fully integrated, wireless device with stable and bias-free operation for 40 h. Furthermore, the concept is scaled to a device area of 64 cm(2) comprising 13 base units exhibiting a solar-to-hydrogen efficiency of 3.9%. The concept and its successful realization may be an important contribution towards the large-scale application of artificial photosynthesis.

4.
Phys Chem Chem Phys ; 18(16): 10751-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26823011

RESUMO

To achieve an overall efficient solar water splitting device, not only the efficiencies of photo-converter and catalyst are decisive, but also their appropriate coupling must be considered. In this report we explore the origin of a voltage loss occurring at the interface between a thin film amorphous silicon tandem cell and the TiO2 corrosion protection layer by means of XPS. We find that the overall device can be disassembled into its primary constituents and that they can be analyzed separately, giving insight into the device structure as a whole. Thus, a series of model experiments were conducted, each representing a part of the complete device. We finally arrive at the conclusion, that the formation of a SiO2 interfacial layer between the TiO2 protection layer and the silicon cell gives rise to the voltage loss observed for the whole device.

5.
ACS Omega ; 1(5): 832-836, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457165

RESUMO

The impact of light-induced degradation (LID) of silicon photoelectrodes on the solar-to-hydrogen efficiency of photoelectrochemical (PEC) devices is investigated. To evaluate the effect, stabilized state-of-the-art thin-film silicon solar cells (after 1000 h of light soaking) were used as photocathodes in photovoltaic-electrochemical (PV-EC) device assemblies and their performances were compared to the performances of the initial solar-cell-based PV-EC devices. A wide range of photoelectrode configurations (tandem, triple, quadruple) was addressed. With regard to the widespread use of multijunction-based photoelectrodes in the literature, the results presented herein will have a high impact and may serve as guidelines for the design of photovoltaic devices particularly tailored for PEC applications, with high stabilities and efficiencies. It is shown that LID affects the performances of PV and PV-EC devices in different ways and strongly depends on the photovoltage of the applied solar cell.

6.
Chemphyschem ; 15(18): 4026-31, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335095

RESUMO

In this study amorphous silicon tandem solar cells are successfully utilized as photoelectrodes in a photoelectrochemical cell for water electrolysis. The tandem cells are modified with various amounts of platinum and are combined with a ruthenium oxide counter electrode. In a two-electrode arrangement this system is capable of splitting water without external bias with a short-circuit current of 4.50 mA cm(-2). On the assumption that no faradaic losses occur, a solar-to-hydrogen efficiency of 5.54% is achieved. In order to identify the relevant loss processes, additional three-electrode measurements were performed for each involved half-cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...